Renormalized solutions of the fractional Laplace equation

被引:24
作者
Alibaud, Nathael [1 ,2 ]
Andreianov, Boris [1 ]
Bendahmane, Mostafa [3 ]
机构
[1] Univ Franche Comte, Phys Mol Lab, CNRS, Math Lab,UMR 6623, F-25030 Besancon, France
[2] Ecole Natl Super Mecan & Microtech, F-25030 Besancon, France
[3] Univ Bordeaux 2, Inst Math Bordeaux, F-33076 Bordeaux, France
关键词
D O I
10.1016/j.crma.2010.05.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define renormalized solutions for the problems of the kind beta(u) + (-Delta)(s/2)u sic f in R(n), f is an element of L(1)(R(n)). Here beta is a maximal monotone graph in R, and (-Delta)(s/2), s is an element of (0,2), is the fractional Laplace operator which is a particular case of Levy diffusions. We prove well-posedness in the framework of renormalized solutions. Then the Cauchy problem for the associated evolution equations can be solved using the Crandall-Liggett semigroup technique. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:759 / 762
页数:4
相关论文
共 6 条
[1]  
Benilan P., Nonlinear evolution equations in Banach spaces
[2]  
Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
[3]   The discontinuous Galerkin method for fractal conservation laws [J].
Cifani, Simone ;
Jakobsen, Espen R. ;
Karlsen, Kenneth H. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) :1090-1122
[4]  
Dal Maso G., 1999, ANN SC NORM SUPER PI, V28, P741
[5]  
KARLSEN KH, 2010, DUALITY APPROACH FRA
[6]  
Murat F., 1994, Equations elliptiques non lineaires avec second membre ou mesure, Comptes rendus du Congres national d'analyse numerique