Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions

被引:72
作者
Colorado, E [1 ]
Peral, I [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
semilinear elliptic equations; eigenvalue problems; mixed boundary conditions;
D O I
10.1016/S0022-1236(02)00101-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work deals with the analysis of problems [GRAPHICS] where B(u) means mixed boundary conditions. We prove results about existence, multiplicity and a priori estimates. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:468 / 507
页数:40
相关论文
共 22 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
Ambrosetti A., 1997, Differential and Integral Equations, V10, P37
[4]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[5]   A NONEXISTENCE THEOREM FOR AN EQUATION WITH CRITICAL SOBOLEV EXPONENT IN THE HALF-SPACE [J].
BERESTYCKI, H ;
GROSSI, M ;
PACELLA, F .
MANUSCRIPTA MATHEMATICA, 1992, 77 (2-3) :265-281
[6]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[7]  
Berestycki H., 1991, Bol Soc Brasileira Mat, V22, P1, DOI DOI 10.1007/BF01244896
[8]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[9]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[10]  
DAMASCELLI L, SOME NONEXISTENCE RE