Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

被引:12
作者
Allen, Patrick [1 ]
Cai, Lili [2 ]
Zhou, Lite [1 ,3 ]
Zhao, Chenqi [1 ,3 ]
Rao, Pratap M. [1 ,3 ]
机构
[1] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Worcester Polytech Inst, Mat Sci & Engn Grad Program, Worcester, MA 01609 USA
关键词
METAL-OXIDE; TUNGSTEN-OXIDE; MOLYBDENUM OXIDES; NANOSTRUCTURES; OXIDATION; GROWTH; ANODE; PERFORMANCE; NUCLEATION; KINETICS;
D O I
10.1038/srep27832
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20-60 nm and lengths of 4-6 mu m on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 degrees C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Facile synthesis of α-MoO3 nanorods with high sensitivity to CO and intrinsic sensing performance [J].
Bai, Shouli ;
Chen, Chao ;
Tian, Ye ;
Chen, Song ;
Luo, Ruixian ;
Li, Dianqing ;
Chen, Aifan ;
Liu, Chung Chiun .
MATERIALS RESEARCH BULLETIN, 2015, 64 :252-256
[2]   MASS-SPECTROMETRIC INVESTIGATION OF OXIDATION OF MOLYBDENUM AND TUNGSTEN [J].
BERKOWITZ, J ;
GOLDSTEIN, SN ;
BUCHLER, A ;
ENGELKE, JL .
JOURNAL OF CHEMICAL PHYSICS, 1963, 39 (10) :2722-&
[3]   Flame synthesis of 1-D complex metal oxide nanomaterials [J].
Cai, Lili ;
Rao, Pratap Mahesh ;
Feng, Yunzhe ;
Zheng, Xiaolin .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 :2229-2236
[4]   Morphology-Controlled Flame Synthesis of Single, Branched, and Flower-like α-MoO3 Nanobelt Arrays [J].
Cai, Lili ;
Rao, Pratap M. ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (02) :872-877
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   MOLYBDENUM OXIDE CATHODES IN SECONDARY LITHIUM CELLS [J].
CHRISTIAN, PA ;
CARIDES, JN ;
DISALVO, FJ ;
WASZCZAK, JV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (11) :2315-2319
[7]   Friction behavior of alumina/molybdenum composites and formation of MoO3-x phase at 400 °C [J].
Cura, M. E. ;
Liu, X. W. ;
Kanerva, U. ;
Varjus, S. ;
Kivioja, A. ;
Soderberg, O. ;
Hannula, S-P. .
TRIBOLOGY INTERNATIONAL, 2015, 87 :23-31
[8]   New composite films based on MoO3-x nanowires aligned in a liquid single crystal elastomer matrix [J].
Domenici, Valentina ;
Conradi, Marjetka ;
Remskar, Maja ;
Virsek, Marko ;
Zupancic, Blaz ;
Mrzel, Ales ;
Chambers, Martin ;
Zalar, Bostjan .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (10) :3639-3645
[9]  
Dubrovskii V. G., 2013, NUCL THEORY GROWTH N, P25
[10]   Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life [J].
Ge, Mingyuan ;
Rong, Jiepeng ;
Fang, Xin ;
Zhou, Chongwu .
NANO LETTERS, 2012, 12 (05) :2318-2323