Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications

被引:159
|
作者
Alexander, Amit [1 ]
Ajazuddin [2 ]
Khan, Junaid [1 ]
Saraf, Swarnlata [1 ]
Saraf, Shailendra [1 ]
机构
[1] Pt Ravishankar Shukla Univ, Univ Inst Pharm, Raipur 492010, Madhya Pradesh, India
[2] Rungta Coll Pharmaceut Sci & Res, Bhilai, India
关键词
Hydrogel; Injectable; In situ thermo responsive; Poly ethylene glycol; Poly(N-isopropylacrylamide) (PNIPAAm); Novel; POLY N-ISOPROPYLACRYLAMIDE; PLURONIC F-127 GELS; CONTROLLED-RELEASE; POLY(ETHYLENE GLYCOL); POLY(N-ISOPROPYLACRYLAMIDE) HYDROGELS; THERMOREVERSIBLE GELATION; BLOCK-COPOLYMER; DRUG-DELIVERY; TEMPERATURE; BEHAVIOR;
D O I
10.1016/j.ejpb.2014.07.005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Protein and peptide delivery by the use of stimuli triggered polymers remains to be the area of interest among the scientist and innovators. In-situ forming gel for the parenteral route in the form of hydrogel and implants are being utilized for various biomedical applications The formulation of gel depends upon factors such as temperature modulation, pH changes, the presence of ions and ultra-violet irradiation, from which drug is released in a sustained and controlled manner. Among various stimuli triggered factors, thermoresponsive is the most potential one for the delivery of protein and peptides. Poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of its biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review, stresses on the physicochemical property, stability and compositions prospects of smart thermoresponsive polymer specifically, PEG/Poly(N-isopropylacrylamide) (PNIPAAm) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. PEG-PNIPAAm based hydrogel exhibits good gelling mechanical strength and minimizes the initial burst effect of the drug. In addition, upon changing the composition and proportion of the copolymer molecular weight and ratio, the gelling time can be reduced to a great extent providing better sol-gel transition. The hydrogel formed by the same is able to release the drug over a long duration of time, meanwhile is also biocompatible and biodegradable. Manuscript will give the new researchers an idea about the potential and benefits of PNIPAAm based thermoresponsive hydrogels for the biomedical application. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:575 / 585
页数:11
相关论文
共 50 条
  • [1] Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications
    Xu, Xiaomin
    Liu, Yang
    Fu, Wenbo
    Yao, Mingyu
    Ding, Zhen
    Xuan, Jiaming
    Li, Dongxiang
    Wang, Shengjie
    Xia, Yongqing
    Cao, Meiwen
    POLYMERS, 2020, 12 (03)
  • [2] Effect of the molecular weight of polyethylene glycol (PEG) on the properties of chitosan-PEG-poly(N-isopropylacrylamide) hydrogels
    Sun, Guoming
    Zhang, Xian-Zheng
    Chu, Chih-Chang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2008, 19 (08) : 2865 - 2872
  • [3] Effect of the molecular weight of polyethylene glycol (PEG) on the properties of chitosan-PEG-poly(N-isopropylacrylamide) hydrogels
    Guoming Sun
    Xian-Zheng Zhang
    Chih-Chang Chu
    Journal of Materials Science: Materials in Medicine, 2008, 19 : 2865 - 2872
  • [4] Biodegradable Thermosensitive Injectable Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Based Hydrogels for Biomedical Applications
    Gokce Kocabay, O.
    Ismail, O.
    POLYMER SCIENCE SERIES A, 2021, 63 (05) : 493 - 504
  • [5] Biodegradable Thermosensitive Injectable Poly(ε-caprolactone)–Poly(ethylene glycol)–Poly(ε-caprolactone) Based Hydrogels for Biomedical Applications
    Ö. Gökçe Kocabay
    O. İsmail
    Polymer Science, Series A, 2021, 63 : 493 - 504
  • [6] Injectable, Degradable Thermoresponsive Poly(N-isopropylacrylamide) Hydrogels
    Patenaude, Mathew
    Hoare, Todd
    ACS MACRO LETTERS, 2012, 1 (03): : 409 - 413
  • [7] Thermosensitive nanogels based on dendritic polyglycerol and N-isopropylacrylamide for biomedical applications
    Cuggino, Julio C.
    Alvarez I, Cecilia I.
    Strumia, Miriam C.
    Welker, Pia
    Licha, Kai
    Steinhilber, Dirk
    Mutihac, Radu-Cristian
    Calderon, Marcelo
    SOFT MATTER, 2011, 7 (23) : 11259 - 11266
  • [8] Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art
    Ansari, Mohammad Javed
    Rajendran, Rahul R.
    Mohanto, Sourav
    Agarwal, Unnati
    Panda, Kingshuk
    Dhotre, Kishore
    Manne, Ravi
    Deepak, A.
    Zafar, Ameeduzzafar
    Yasir, Mohd
    Pramanik, Sheersha
    GELS, 2022, 8 (07)
  • [9] Effect of the initiator on thermosensitive rate of poly(N-isopropylacrylamide) hydrogels
    Xiao, X. C.
    EXPRESS POLYMER LETTERS, 2007, 1 (04): : 232 - 235
  • [10] Thermosensitive poly(N-isopropylacrylamide) hydrogels bonded on cellulose supports
    Xie, JB
    Hsieh, YL
    JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 89 (04) : 999 - 1006