Emergence of fit-get-rich networks from chaotic attractors

被引:2
作者
Shimada, Yutaka [1 ]
Ikeguchi, Tohru [1 ,2 ]
机构
[1] Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, Saitama 3388570, Japan
[2] Saitama Univ, Brain Sci Inst, Saitama 3388570, Japan
关键词
Chaos; Complex networks; RP; Stretching and folding; TIME-SERIES; COMPLEX NETWORKS; RECURRENCE PLOTS; SYSTEMS; MOTIFS;
D O I
10.1016/j.physleta.2010.05.048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Connecting dynamical information of the nonlinear dynamical systems to the temporal evolution of complex networks, we analyze nonlinear dynamical systems with complex-network theory. We dynamically construct networks from attractors of nonlinear dynamical systems depending on their dynamical information and thereby we can evaluate the attractors through the evolution processes of constructed networks. As a result, we find that the constructed networks from periodic attractors correspond to the first-mover-advantage phase and those from chaotic attractors correspond to the fit-get-rich phase. We also show that the fit-get-rich property is originated to an essential mechanism for producing chaotic dynamics stretching and folding. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3170 / 3176
页数:7
相关论文
共 19 条
[1]  
[Anonymous], J ATMOS SCI
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Bose-Einstein condensation in complex networks [J].
Bianconi, G ;
Barabási, AL .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5632-5635
[4]   RECURRENCE PLOTS OF DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D .
EUROPHYSICS LETTERS, 1987, 4 (09) :973-977
[5]   Detection of the type of intermittency using characteristic patterns in recurrence plots [J].
Klimaszewska, Katarzyna ;
Zebrowski, Jan J. .
PHYSICAL REVIEW E, 2009, 80 (02)
[6]   From time series to complex networks:: The visibility graph [J].
Lacasa, Lucas ;
Luque, Bartolo ;
Ballesteros, Fernando ;
Luque, Jordi ;
Nuno, Juan Carlos .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (13) :4972-4975
[7]   Recurrence plots for the analysis of complex systems [J].
Marwan, Norbert ;
Romano, M. Carmen ;
Thiel, Marco ;
Kurths, Juergen .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 438 (5-6) :237-329
[8]   Superfamilies of evolved and designed networks [J].
Milo, R ;
Itzkovitz, S ;
Kashtan, N ;
Levitt, R ;
Shen-Orr, S ;
Ayzenshtat, I ;
Sheffer, M ;
Alon, U .
SCIENCE, 2004, 303 (5663) :1538-1542
[9]   Network motifs: Simple building blocks of complex networks [J].
Milo, R ;
Shen-Orr, S ;
Itzkovitz, S ;
Kashtan, N ;
Chklovskii, D ;
Alon, U .
SCIENCE, 2002, 298 (5594) :824-827
[10]   EQUATION FOR CONTINUOUS CHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1976, 57 (05) :397-398