Double standard maps

被引:13
作者
Misiurewicz, Michal
Rodrigues, Ana
机构
[1] IUPI, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Univ Porto, Ctr Matemat, Dept Matemat Pura, P-4169007 Oporto, Portugal
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-007-0223-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the family of double standard maps of the circle onto itself, given by fa,b( x) = 2x + a + (b/pi) sin(2 pi x) (mod 1), where the parameters a, b are real and 0 <= b <= 1. Similarly to the well known family of (Arnold) standard maps of the circle, Aa, b(x) = x + a + (b/( 2 pi)) sin(2 pi x) ( mod 1), any such map has at most one attracting periodic orbit and the set of parameters (a, b) for which such orbit exists is divided into tongues. However, unlike the classical Arnold tongues that begin at the level b = 0, for double standard maps the tongues begin at higher levels, depending on the tongue. Moreover, the order of the tongues is different. For the standard maps it is governed by the continued fraction expansions of rational numbers; for the double standard maps it is governed by their binary expansions. We investigate closer two families of tongues with different behavior.
引用
收藏
页码:37 / 65
页数:29
相关论文
共 12 条
[1]  
Arnold VI., 1965, Trans. Am. Math. Soc. 2nd Ser, V46, P213, DOI [10.1007/BF00275153, 10.1090/trans2/046/11]
[2]   ITERATION OF MEROMORPHIC FUNCTIONS [J].
BERGWEILER, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :151-188
[3]   Julia sets of expanding polynomials [J].
Blokh, A ;
Cleveland, C ;
Misiurewicz, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1691-1718
[4]   Branched derivatives [J].
Blokh, A ;
Misiurewicz, M .
NONLINEARITY, 2005, 18 (02) :703-715
[5]   THE SET OF MAPS F-A,F-B-X-]X+A+B/2-PI-SIN(2-PI-X) WITH ANY GIVEN ROTATION INTERVAL IS CONTRACTILE [J].
EPSTEIN, A ;
KEEN, L ;
TRESSER, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (02) :313-333
[6]   THE SCALING OF ARNOLD TONGUES FOR DIFFERENTIABLE HOMEOMORPHISMS OF THE CIRCLE [J].
JONKER, LB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (01) :1-25
[7]   Universality of critical circle covers [J].
Levin, G ;
Swiatek, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (02) :371-399
[8]  
Misiurewicz, 2004, MODERN DYNAMICAL SYS, P253
[9]  
Newhouse S., 1983, Inst. Hautes Etudes Sci. Publ. Math, V57, P5
[10]  
Shub M, 1985, ERGOD THEOR DYN SYST, V5, P285, DOI [10.1017/S014338570000290X, DOI 10.1017/S014338570000290X]