Modification of the interface and its influence on the performance of W-6 wt% TiC composite

被引:17
作者
Li, Lingqun [1 ]
Fan, Jinglian [1 ]
Tian, Jiamin [2 ]
Cheng, Huichao [1 ]
Zhang, Hongbo [1 ]
机构
[1] Cent South Univ, Stake Key Lab Powder Met, Changsha 410086, Peoples R China
[2] Changsha Micro Macro New Mat Ltd, Changsha 410016, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 819卷
关键词
Tungsten; Titanium carbide; Nano-size powders; W-TiC composite; LAGB; W-TiC interface; Mechanical properties; PLASMA-FACING COMPONENTS; FRACTURE-TOUGHNESS; TUNGSTEN; DUCTILITY; DIVERTOR;
D O I
10.1016/j.msea.2021.141442
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To broaden the application field of tungsten, low-density tungsten-based composites need to be developed. In this study, a W-6 wt% TiC composite with a fine grain size was successfully fabricated by pressureless sintering. Transmission electron microscopy (TEM) analysis shows that the W-TiC interface in the composite is coherent. Furthermore, STEM analysis shows that a Ti-concentration zone (TCZ) with a width of -30 nm along the W-TiC interface exists in the TiC phase, which is attributed to high defect density in TiC induced by high-energy milling. EBSD analysis shows that the composite has a considerable portion of LAGBs (13.5% in W-W boundaries and 32.5% in TiC-TiC boundaries). The modified interface and fine grain improve the mechanical properties of the composite: the ultimate tensile strength and Vickers hardness reached 630 MPa and 6.72 GPa, respectively.
引用
收藏
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 2021, FACTSAGE 8 0 SUMMARY
[2]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS [J].
ANSTIS, GR ;
CHANTIKUL, P ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :533-538
[3]   Size-dependent fracture toughness of tungsten [J].
Ast, Johannes ;
Goeken, Mathias ;
Durst, Karsten .
ACTA MATERIALIA, 2017, 138 :198-211
[4]   Materials for the plasma-facing components of fusion reactors [J].
Bolt, H ;
Barabash, V ;
Krauss, W ;
Linke, J ;
Neu, R ;
Suzuki, S ;
Yoshida, N .
JOURNAL OF NUCLEAR MATERIALS, 2004, 329 :66-73
[5]   Micro/nano composited tungsten material and its high thermal loading behavior [J].
Fan, Jinglian ;
Han, Yong ;
Li, Pengfei ;
Sun, Zhiyu ;
Zhou, Qiang .
JOURNAL OF NUCLEAR MATERIALS, 2014, 455 (1-3) :717-723
[6]   Effects of ELMS and disruptions on ITER divertor armour materials [J].
Federici, G ;
Zhitlukhin, A ;
Arkhipov, N ;
Giniyatulin, R ;
Klimov, N ;
Landman, I ;
Podkovyrov, V ;
Safronov, V ;
Loarte, A ;
Merola, M .
JOURNAL OF NUCLEAR MATERIALS, 2005, 337 (1-3) :684-690
[7]  
Griffith AA, 1920, PHILOS T R SOC LOND, V221, P163, DOI [10.1098/rsta.1921.0006, DOI 10.1098/RSTA.1921.0006]
[8]  
Hu GX., 2010, Fundamentals of Materials Science, V3
[9]   Status and strategy of fusion materials development in China [J].
Huang, Q. Y. ;
Wu, Y. C. ;
Li, J. G. ;
Wan, F. R. ;
Chen, J. L. ;
Luo, G. N. ;
Liu, X. ;
Chen, J. M. ;
Xu, Z. Y. ;
Zhou, X. G. ;
Ju, X. ;
Shan, Y. Y. ;
Yu, J. N. ;
Zhu, S. Y. ;
Zhang, P. Y. ;
Yang, J. F. ;
Chen, X. J. ;
Dong, S. M. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 :400-404
[10]   Microstructure and bend ductility of W-0.3 mass% TiC alloys fabricated by advanced powder-metallurgical processing [J].
Ishijima, Y ;
Kurishita, H ;
Arakawa, H ;
Hasegawa, M ;
Hiraoka, Y ;
Takida, T ;
Takebe, K .
MATERIALS TRANSACTIONS, 2005, 46 (03) :568-574