A fuzzy crisis in a Duffing-van der Pol system

被引:7
作者
Hong Ling [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Strength & Vibrat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
fuzzy dynamical systems; fuzzy noise; fuzzy bifurcation; cell mapping methods; GLOBAL ANALYSIS; BIFURCATIONS; ATTRACTORS; DYNAMICS;
D O I
10.1088/1674-1056/19/3/030513
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A crisis in a Duffing-van del Pol system with fuzzy uncertainties is studied by means of the fuzzy generalised cell mapping (FGCM) method. A crisis happens when two fuzzy attractors collide simultaneously with a fuzzy saddle on the basin boundary as the intensity of fuzzy noise reaches a critical point. The two fuzzy attractors merge discontinuously to form one large fuzzy attractor after a crisis. A fuzzy attractor is characterized by its global topology and membership function. A fuzzy saddle with a complicated pattern of several disjoint segments is observed in phase space. It leads to a discontinuous merging crisis of fuzzy attractors. We illustrate this crisis event by considering a fixed point under additive and multiplicative fuzzy noise. Such a crisis is fuzzy noise-induced effects which cannot be seen in deterministic systems.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Compound bursting behaviors in a forced Mathieu-van der Pol-Duffing system [J].
Ma, Xindong ;
Xia, Daixian ;
Jiang, Wenan ;
Liu, Mao ;
Bi, Qinsheng .
CHAOS SOLITONS & FRACTALS, 2021, 147
[32]   Rare and hidden attractors in Van der Pol-Duffing oscillators [J].
Brezetskyi, S. ;
Dudkowski, D. ;
Kapitaniak, T. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08) :1459-1467
[33]   Multistability and organization of periodicity in a Van der Pol-Duffing oscillator [J].
Wiggers, Vinicius ;
Rech, Paulo C. .
CHAOS SOLITONS & FRACTALS, 2017, 103 :632-637
[34]   Analysis and electronic implementation of an absolute memristor autonomous Van der Pol-Duffing circuit [J].
Rajagopal, Karthikeyan ;
Pone, Justin Roger Mboupda ;
Kingni, Sifeu Takougang ;
Arun, Sundaram ;
Karthikeyan, Anitha .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (10) :2287-2299
[35]   Hyperchaos and Coexisting Attractors in a Modified van der Pol-Duffing Oscillator [J].
Rajagopal, Karthikeyan ;
Khalaf, Abdul Jalil M. ;
Wei, Zhouchao ;
Viet-Thanh Pham ;
Alsaedi, Ahmed ;
Hayat, Tasawar .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (05)
[36]   Lag Synchronization in Coupled Multistable van der Pol-Duffing Oscillators [J].
Dudkowski, Dawid ;
Kuzma, Patrycja ;
Kapitaniak, Tomasz .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
[37]   Chaotic Motions of the van der Pol-Duffing Oscillator Subjected to Periodic External and Parametric Excitations with Delayed Feedbacks [J].
Zhou, Liang-qiang ;
Chen, Fang-qi .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (04) :1111-1126
[38]   Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol-Duffing oscillators. Broadband synchronization [J].
Kuznetsov, Alexander P. ;
Roman, Julia P. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (16) :1499-1506
[39]   Reversal of period doubling, multistability and symmetry breaking aspects for a system composed of a van der pol oscillator coupled to a duffing oscillator [J].
Ramadoss, Janarthanan ;
Kengne, Jacques ;
Tanekou, Sosthene Tsamene ;
Rajagopal, Karthikeyan ;
Kenmoe, Germaine Djuidje .
CHAOS SOLITONS & FRACTALS, 2022, 159
[40]   Complexity in a Hybrid van der Pol System [J].
Naudot, Vincent ;
Kepley, Shane ;
Kalies, William D. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (13)