A fuzzy crisis in a Duffing-van der Pol system

被引:7
|
作者
Hong Ling [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Strength & Vibrat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
fuzzy dynamical systems; fuzzy noise; fuzzy bifurcation; cell mapping methods; GLOBAL ANALYSIS; BIFURCATIONS; ATTRACTORS; DYNAMICS;
D O I
10.1088/1674-1056/19/3/030513
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A crisis in a Duffing-van del Pol system with fuzzy uncertainties is studied by means of the fuzzy generalised cell mapping (FGCM) method. A crisis happens when two fuzzy attractors collide simultaneously with a fuzzy saddle on the basin boundary as the intensity of fuzzy noise reaches a critical point. The two fuzzy attractors merge discontinuously to form one large fuzzy attractor after a crisis. A fuzzy attractor is characterized by its global topology and membership function. A fuzzy saddle with a complicated pattern of several disjoint segments is observed in phase space. It leads to a discontinuous merging crisis of fuzzy attractors. We illustrate this crisis event by considering a fixed point under additive and multiplicative fuzzy noise. Such a crisis is fuzzy noise-induced effects which cannot be seen in deterministic systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Numerical solutions of stochastic Duffing-Van der Pol equations
    Hamed, Maha
    El-Kalla, I. L.
    El-Beltagy, Mohamed A.
    El-desouky, Beih S.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 256 - 273
  • [12] Duffing-Van der pol系统的Hopf分岔
    符五久
    振动与冲击, 2010, 29 (07) : 204 - 209+246
  • [13] FIRST INTEGRALS FOR THE DUFFING-VAN DER POL TYPE OSCILLATOR
    Gao, Guangyue
    Feng, Zhaosheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, : 123 - 133
  • [14] Numerical solutions of stochastic Duffing-Van der Pol equations
    Maha hamed
    I. L. El-Kalla
    Mohamed A. El-Beltagy
    Beih S. El-desouky
    Indian Journal of Pure and Applied Mathematics, 2024, 55 : 256 - 273
  • [15] Filtering for a Duffing-van der Pol stochastic differential equation
    Patel, Hiren G.
    Sharma, Shambhu N.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 386 - 397
  • [16] Bifurcation scenarios of the noisy Duffing-van der Pol oscillator
    SchenkHoppe, KR
    NONLINEAR DYNAMICS, 1996, 11 (03) : 255 - 274
  • [17] DUFFING-VAN DER POL-TYPE OSCILLATOR SYSTEMS
    Feng, Zhaosheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (06): : 1231 - 1257
  • [18] Duffing-van der Pol系统的随机分岔
    李爽
    徐伟
    李瑞红
    力学学报, 2006, (03) : 429 - 432
  • [19] A Kolmogorov-Fokker-Planck approach for a stochastic Duffing-van der Pol system
    Sharma S.N.
    Differential Equations and Dynamical Systems, 2008, 16 (4) : 351 - 377
  • [20] DUFFING-VAN DER POL-TYPE OSCILLATOR SYSTEM AND ITS FIRST INTEGRALS
    Feng, Zhaosheng
    Gao, Guangyue
    Cui, Jing
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (05) : 1377 - 1392