Purpose: The purpose of this study was to measure the surface roughness of milled chairside computer-assisted design/computer assisted machining (CAD/CAM) restorations using several contouring/polishing systems as to their effectiveness for creating a clinically acceptable surface. Materials and Methods: One hundred onlays were milled from monolithic CAD/CAM blocks with an MCXL milling chamber (Sirona Dental) as follows: 30 resin nano-ceramic (Lava Ultimate, 3M ESPE), 30 hybrid ceramic (Enamic, Vita) and 40 leucite-reinforced ceramic (EmpressCAD, Ivoclar). A single group of EmpressCAD onlays was glazed-fired in a porcelain oven (Programat CS2, Ivoclar). Finishing and polishing systems consisted of either an abrasive-polish technique or a brush-polish technique. Roughness values were measured using a three-dimensional measuring laser microscope (OLS4000 LEXT by Olympus). Results: There was a significant difference in the baseline surface roughness of the CAD/CAM materials (p <= 0.05), with the resin nano-ceramic (Lava Ultimate) being smoother than the hybrid ceramic (Enamic), and both being smoother than the leucite-reinforced ceramic (EmpressCAD). All polishing techniques resulted in a smoother surface compared with the baseline surface for the leucite-reinforced ceramic (p <= 0.05), with both techniques resulting in a significantly smoother surface than glazing in a porcelain oven (p <= 0.05). Both polishing techniques resulted in a smoother surface compared with the baseline surface for both the nano-ceramic and hybrid ceramic materials (p <= 0.05). Conclusions: It is possible to create an equally smooth surface for chairside CAD/CAM resilient materials compared with milled ceramics using several finishing and polishing techniques. In general, the polished ceramic surfaces were smoother than the glazed ceramic surfaces.