In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles

被引:76
作者
Feng, Siquan [1 ,2 ]
Song, Xiangen [1 ]
Liu, Yang [2 ,3 ,4 ]
Lin, Xiangsong [5 ]
Yan, Li [1 ]
Liu, Siyue [6 ]
Dong, Wenrui [6 ]
Yang, Xueming [6 ,7 ]
Jiang, Zheng [3 ,4 ]
Ding, Yunjie [1 ,7 ,8 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[4] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201204, Peoples R China
[5] Jiaxing Univ, Sch Mat & Text Engn, Jiaxing 314001, Peoples R China
[6] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
[7] Zhejiang Normal Univ, Hangzhou Inst Adv Studies, Hangzhou 311231, Zhejiang, Peoples R China
[8] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
基金
国家重点研发计划;
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; HETEROGENEOUS CATALYSIS; ACTIVE-SITES; GOLD; CARBONYLATION; REDISPERSION; CHEMISTRY; METHANOL; RHODIUM;
D O I
10.1038/s41467-019-12965-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Supported noble metal nanoclusters and single-metal-site catalysts are inclined to aggregate into particles, driven by the high surface-to-volume ratio. Herein, we report a general method to atomically disperse noble metal nanoparticles. The activated carbon supported nanoparticles of Ru, Rh, Pd, Ag, Ir and Pt metals with loading up to 5 wt. % are completely dispersed by reacting with CH3I and CO mixture. The dispersive process of the Rh nano-particle is investigated in depth as an example. The in-situ detected I center dot radicals and CO molecules are identified to promote the breakage of Rh-Rh bonds and the formation of mononuclear complexes. The isolated Rh mononuclear complexes are immobilized by the oxygen-containing functional groups based on the effective atomic number rule. The method also provides a general strategy for the development of single-metal-site catalysts for other applications.
引用
收藏
页数:9
相关论文
共 51 条
[11]  
2-P
[12]   Modification of the surface chemistry of activated carbons [J].
Figueiredo, JL ;
Pereira, MFR ;
Freitas, MMA ;
Orfao, JJM .
CARBON, 1999, 37 (09) :1379-1389
[13]  
Frisch M.J., 2016, GAUSSIAN 16
[14]   Wavelet analysis of extended x-ray absorption fine structure data [J].
Funke, H ;
Scheinost, AC ;
Chukalina, M .
PHYSICAL REVIEW B, 2005, 71 (09)
[15]   Atomically dispersed supported metal catalysts: perspectives and suggestions for future research [J].
Gates, Bruce C. ;
Flytzani-Stephanopoulos, Maria ;
Dixon, David A. ;
Katz, Alexander .
CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (19) :4259-4275
[16]   Increased Dispersion of Supported Gold during Methanol Carbonylation Conditions [J].
Goguet, Alexandre ;
Hardacre, Christopher ;
Harvey, Ian ;
Narasimharao, Katabathini ;
Saih, Youssef ;
Sa, Jacinto .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (20) :6973-+
[17]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[18]   Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening? [J].
Hansen, Thomas W. ;
Delariva, Andrew T. ;
Challa, Sivakumar R. ;
Datye, Abhaya K. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (08) :1720-1730
[19]   THE CHEMISORPTION OF METHYL HALIDES (CL, BR AND I) ON PT(111) [J].
HENDERSON, MA ;
MITCHELL, GE ;
WHITE, JM .
SURFACE SCIENCE, 1987, 184 (1-2) :L325-L331
[20]   Mechanistic understanding of methanol carbonylation: Interfacing homogeneous and heterogeneous catalysis via carbon supported Ir-La [J].
Hensley, Alyssa J. R. ;
Zhang, Jianghao ;
Vincon, Ilka ;
Hernandez, Xavier Pereira ;
Tranca, Diana ;
Seifert, Gotthard ;
McEwen, Jean-Sabin ;
Wang, Yong .
JOURNAL OF CATALYSIS, 2018, 361 :414-422