Some Conditions for Maximal Monotonicity of Bifunctions

被引:8
作者
Hadjisavvas, Nicolas [1 ]
Jacinto, Flavia M. O. [2 ]
Martinez-Legaz, Juan E. [3 ,4 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Fed Amazonas, Dept Matemat, BR-69077000 Manaus, AM, Brazil
[3] Univ Autonoma Barcelona, MOVE, Bellaterra 08193, Spain
[4] Univ Autonoma Barcelona, Dept Econ & Hist Econ, Bellaterra 08193, Spain
基金
澳大利亚研究理事会;
关键词
Monotone bifunctions; Maximal monotone operators; Equilibrium problems; CONVEX-FUNCTIONS; OPERATORS;
D O I
10.1007/s11228-015-0343-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present necessary and sufficient conditions for a monotone bifunction to be maximally monotone, based on a recent characterization of maximally monotone operators. These conditions state the existence of solutions to equilibrium problems obtained by perturbing the defining bifunction in a suitable way.
引用
收藏
页码:323 / 332
页数:10
相关论文
共 12 条
[1]   On the Fitzpatrick transform of a monotone bifunction [J].
Alizadeh, M. H. ;
Hadjisavvas, N. .
OPTIMIZATION, 2013, 62 (06) :693-701
[2]  
Blum E., 1994, Math. student, V63, P123
[3]  
Bot RI, 2012, J CONVEX ANAL, V19, P713
[4]  
Burachik RS, 2005, J NONLINEAR CONVEX A, V6, P165
[5]   Maximal monotonicity of bifunctions [J].
Hadjisavvas, N. ;
Khatibzadeh, H. .
OPTIMIZATION, 2010, 59 (02) :147-160
[6]  
Hu S., 1997, Handbook of multivalued analysis, DOI 10.1007/978-1-4615-6359-4
[7]   On Diagonal Subdifferential Operators in Nonreflexive Banach Spaces [J].
Iusem, A. N. ;
Svaiter, Benar Fux .
SET-VALUED AND VARIATIONAL ANALYSIS, 2012, 20 (01) :1-14
[8]  
Iusem AN, 2011, J CONVEX ANAL, V18, P489
[9]  
Martínez-Legaz JE, 2008, PAC J OPTIM, V4, P527
[10]   Monotone operators representable by l.s.c. convex functions [J].
Martínez-Legaz, JE ;
Svaiter, BF .
SET-VALUED ANALYSIS, 2005, 13 (01) :21-46