Simplicial structures in higher Auslander-Reiten theory

被引:13
作者
Dyckerhoff, Tobias [1 ]
Jasso, Gustavo [2 ]
Walde, Tashi [2 ]
机构
[1] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
[2] Rheinische Friedrich Wilhelms Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Higher Auslander algebras; Higher Segal spaces; Tilting; Dold-Kan correspondence; REPRESENTATION-FINITE ALGEBRAS; HOMOLOGY; FUNCTORS;
D O I
10.1016/j.aim.2019.106762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a novel combinatorial perspective on the higher Auslander algebras of type A, a family of algebras arising in the context of Iyama's higher Auslander-Reiten theory. This approach reveals interesting simplicial structures hidden within the representation theory of these algebras and establishes direct connections to Eilenberg-MacLane spaces and higher-dimensional versions of Waldhausen's S-center dot-construction in algebraic K-theory. As an application of our techniques we provide a generalisation of the higher reflection functors of Iyama and Oppermann to representations with values in stable infinity-categories. The resulting combinatorial framework of slice mutation can be regarded as a higher-dimensional variant of the abstract representation theory of type A quivers developed by Groth and Stovicek. Our simplicial point of view then naturally leads to an interplay between slice mutation, horn filling conditions, and the higher Segal conditions of Dyckerhoff and Kapranov. In this context, we provide a classification of higher Segal objects with values in any abelian category or stable infinity-category. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:73
相关论文
共 44 条
[1]  
[Anonymous], 2009, HIGHER TOPOS THEORY, DOI DOI 10.1515/9781400830558
[2]  
AUSLANDER M, 1979, T AM MATH SOC, V250, P1
[3]  
Auslander M, 1971, Lecture notes
[4]  
Auslander M., 1997, CAMBRIDGE STUDIES AD, V36
[5]  
Beckert F., 2018, ABSTRACT CUBICAL HOM
[6]  
Beckert F., THESIS
[7]  
Beilinson A., 1988, J GEOM PHYS, V5, P317
[8]  
Beilinson A.A., 1978, Funct. Anal. Appl., V12, P214, DOI [DOI 10.1007/BF01681436, 10.1007/BF01681436]
[9]   The Grothendieck group of an n-angulated category [J].
Bergh, Petter Andreas ;
Thaule, Marius .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (02) :354-366
[10]  
Bernstein I.N., 1973, USP MAT NAUK, V28, P19