Robustness-optimized quantum error correction

被引:3
作者
Layden, David [1 ,2 ]
Huang, Louisa Ruixue [3 ]
Cappellaro, Paola [1 ,2 ]
机构
[1] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
quantum error correction; robustness; decoherence; quantum technology; quantum computing; DECOHERENCE; LIFETIME; QUBIT; BIT;
D O I
10.1088/2058-9565/ab79b2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum error correction (QEC) codes are usually designed to correct errors regardless of their physical origins. In large-scale devices, this is an essential feature. In smaller-scale devices, however, the main error sources are often understood, and this knowledge could be exploited for more efficient error correction. Optimizing the QEC protocol is therefore a promising strategy in smaller devices. Typically, this involves tailoring the protocol to a given decoherence channel by solving an appropriate optimization problem. Here we introduce a new optimization-based approach, which maximizes the robustness to faults in the recovery. Our approach is inspired by recent experiments, where such faults have been a significant source of logical errors. We illustrate this approach with a three-qubit model, and show how near-term experiments could benefit from more robust QEC protocols.
引用
收藏
页数:10
相关论文
共 64 条
[1]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[2]   Robustness of channel-adapted quantum error correction [J].
Ballo, Gabor ;
Gurin, Peter .
PHYSICAL REVIEW A, 2009, 80 (01)
[3]  
Ban M, 1998, J MOD OPTIC, V45, P2315, DOI 10.1080/09500349808231241
[4]  
BenTal A, 2009, PRINC SER APPL MATH, P1
[5]   Approximate simulation of quantum channels [J].
Beny, Cedric ;
Oreshkov, Ognyan .
PHYSICAL REVIEW A, 2011, 84 (02)
[6]   General Conditions for Approximate Quantum Error Correction and Near-Optimal Recovery Channels [J].
Beny, Cedric ;
Oreshkov, Ognyan .
PHYSICAL REVIEW LETTERS, 2010, 104 (12)
[7]   Freezing Coherent Field Growth in a Cavity by the Quantum Zeno Effect [J].
Bernu, J. ;
Deleglise, S. ;
Sayrin, C. ;
Kuhr, S. ;
Dotsenko, I. ;
Brune, M. ;
Raimond, J. M. ;
Haroche, S. .
PHYSICAL REVIEW LETTERS, 2008, 101 (18)
[8]   Dynamical decoupling sequence construction as a filter-design problem [J].
Biercuk, M. J. ;
Doherty, A. C. ;
Uys, H. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (15)
[9]   Optimized dynamical decoupling in a model quantum memory [J].
Biercuk, Michael J. ;
Uys, Hermann ;
VanDevender, Aaron P. ;
Shiga, Nobuyasu ;
Itano, Wayne M. ;
Bollinger, John J. .
NATURE, 2009, 458 (7241) :996-1000
[10]  
Bluhm H, 2011, NAT PHYS, V7, P109, DOI [10.1038/nphys1856, 10.1038/NPHYS1856]