Structure-Reactivity Relations in Ruthenium Catalysed Furfural Hydrogenation

被引:65
作者
Durndell, Lee J. [1 ]
Zou, Guchu [2 ]
Shangguan, Wenfeng [2 ]
Lee, Adam F. [3 ]
Wilson, Karen [3 ]
机构
[1] Univ Plymouth, Fac Sci & Engn, Sch Geog Earth & Environm Sci, Portland Sq, Plymouth PL4 8AA, Devon, England
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai, Peoples R China
[3] RMIT Univ, Sch Sci, Appl Chem & Environm Sci, Melbourne, Vic 3000, Australia
基金
英国工程与自然科学研究理事会;
关键词
Ruthenium; Furfural; Hydrogenation; Heterogeneous catalysis; Mesoporous silica; LIQUID-PHASE HYDROGENATION; SELECTIVE HYDROGENATION; LEVULINIC ACID; MESOPOROUS SILICA; RU/C CATALYSTS; ALCOHOL; CONVERSION; LIGNOCELLULOSE; NANOPARTICLES; CHEMICALS;
D O I
10.1002/cctc.201900481
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Furfural is an abundant and low-cost bio-derived platform chemical, obtained by xylose dehydration, and an important precursor to furfuryl alcohol and furan resins. The liquid phase selective hydrogenation of furfural to furfuryl alcohol was systematically investigated over silica supported Ru nanoparticles to elucidate structure-reactivity relations and obtain mechanistic insight. Furfural hydrogenation to furfuryl alcohol is weakly structure sensitive for Ru nanoparticles spanning 2 to 25 nm, and the dominant reaction pathway reaching 95% selectivity under our conditions (< 25 bar H-2 and 100-165 degrees C). In contrast, furfural decarbonylation to furan exhibits a strong structure sensitivity, being favoured over sub-10 nm particles. Increasing pH(2) from 10 to 25 bar resulted in a modest increase in C=O hydrogenation, while higher temperatures promoted ring-opening of furfuryl alcohol.
引用
收藏
页码:3927 / 3932
页数:6
相关论文
共 60 条
[1]  
[Anonymous], 2015, ESAPWP241
[2]   The relevance of Ru nanoparticles morphology and oxidation state to the partial oxidation of methane [J].
Balint, I ;
Miyazaki, A ;
Aika, K .
JOURNAL OF CATALYSIS, 2003, 220 (01) :74-83
[3]   Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review [J].
Barakat, Abdellatif ;
de Vries, Hugo ;
Rouau, Xavier .
BIORESOURCE TECHNOLOGY, 2013, 134 :362-373
[4]   Efficient, Stable, and Reusable Silicoaluminophosphate for the One-Pot Production of Furfural from Hemicellulose [J].
Bhaumik, Prasenjit ;
Dhepe, Paresh L. .
ACS CATALYSIS, 2013, 3 (10) :2299-2303
[5]   Production of levulinic acid and use as a platform chemical for derived products [J].
Bozell, JJ ;
Moens, L ;
Elliott, DC ;
Wang, Y ;
Neuenscwander, GG ;
Fitzpatrick, SW ;
Bilski, RJ ;
Jarnefeld, JL .
RESOURCES CONSERVATION AND RECYCLING, 2000, 28 (3-4) :227-239
[6]   Domino Reaction Catalyzed by Zeolites with BrOnsted and Lewis Acid Sites for the Production of -Valerolactone from Furfural [J].
Bui, Linh ;
Luo, Helen ;
Gunther, William R. ;
Roman-Leshkov, Yuriy .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (31) :8022-8025
[7]   Green Polymer Precursors from Biomass-Based Levulinic Acid [J].
Chalid, M. ;
Heeres, H. J. ;
Broekhuis, A. A. .
INTERNATIONAL CONFERENCE ON INNOVATION IN POLYMER SCIENCE AND TECHNOLOGY, 2012, 4 :260-267
[8]   How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural [J].
Chen, Shuo ;
Wojcieszak, Robert ;
Dumeignil, Franck ;
Marceau, Eric ;
Royer, Sebastien .
CHEMICAL REVIEWS, 2018, 118 (22) :11023-11117
[9]   Acid-catalyzed polycondensation of furfuryl alcohol: Mechanisms of chromophore formation and cross-linking [J].
Choura, M ;
Belgacem, NM ;
Gandini, A .
MACROMOLECULES, 1996, 29 (11) :3839-3850
[10]   EFFECT OF PRESSURE ON VOLUME + LATTICE PARAMETERS OF RUTHENIUM + IRON [J].
CLENDENEN, RL ;
DRICKAMER, HG .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1964, 25 (08) :865-&