Deep analysis of RNA N6-adenosine methylation (m6A) patterns in human cells

被引:20
作者
Wang, Jun [1 ]
Wang, Liangjiang [1 ]
机构
[1] Clemson Univ, Dept Genet & Biochem, Clemson, SC 29631 USA
关键词
SINGLE-NUCLEOTIDE-RESOLUTION; LONG NONCODING RNAS; MESSENGER-RNA; N-6-METHYLADENOSINE RNA; SEQUENCE SPECIFICITY; GENE-REGULATION; ANTISENSE; PROTEINS; NUCLEAR; BINDING;
D O I
10.1093/nargab/lqaa007
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
N-6-adenosine methylation (m(6)A) is the most abundant internal RNA modification in eukaryotes, and affects RNA metabolism and non-coding RNA function. Previous studies suggest that m(6)A modifications in mammals occur on the consensus sequence DRACH (D = A/G/U, R = A/G, H = A/C/U). However, only about 10% of such adenosines can be m(6)A-methylated, and the underlying sequence determinants are still unclear. Notably, the regulation of m(6)A modifications can be cell-type-specific. In this study, we have developed a deep learning model, called TDm6A, to predict RNA m(6)A modifications in human cells. For cell types with limited availability of m(6)A data, transfer learning may be used to enhance TDm6A model performance. We show that TDm6A can learn common and cell-type-specific motifs, some of which are associated with RNA-binding proteins previously reported to be m(6)A readers or anti-readers. In addition, we have used TDm6A to predict m(6)A sites on human long non-coding RNAs (lncRNAs) for selection of candidates with high levels of m(6)A modifications. The results provide new insights into m(6)A modifications on human protein-coding and non-coding transcripts.
引用
收藏
页数:12
相关论文
共 60 条
[1]   N6-methyladenosine marks primary microRNAs for processing [J].
Alarcon, Claudio R. ;
Lee, Hyeseung ;
Goodarzi, Hani ;
Halberg, Nils ;
Tavazoie, Sohail F. .
NATURE, 2015, 519 (7544) :482-+
[2]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[3]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[4]   Methylation of RNA N6-methyladenosine in modulation of cytokine responses and tumorigenesis [J].
Chang, Guoqiang ;
Leu, Jia-Shiun ;
Ma, Li ;
Xie, Keping ;
Huang, Suyun .
CYTOKINE, 2019, 118 :35-41
[5]   Region-specific RNA m6A methylation represents a new layer of control in the gene regulatory network in the mouse brain [J].
Chang, Mengqi ;
Lv, Hongyi ;
Zhang, Weilong ;
Ma, Chunhui ;
He, Xue ;
Zhao, Shunli ;
Zhang, Zhi-Wei ;
Zeng, Yi-Xin ;
Song, Shuhui ;
Niu, Yamei ;
Tong, Wei-Min .
OPEN BIOLOGY, 2017, 7 (09)
[6]   WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach [J].
Chen, Kunqi ;
Wei, Zhen ;
Zhang, Qing ;
Wu, Xiangyu ;
Rong, Rong ;
Lu, Zhiliang ;
Su, Jionglong ;
de Magalhaes, Joao Pedro ;
Rigden, Daniel J. ;
Meng, Jia .
NUCLEIC ACIDS RESEARCH, 2019, 47 (07)
[7]   iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition [J].
Chen, Wei ;
Feng, Pengmian ;
Ding, Hui ;
Lin, Hao ;
Chou, Kuo-Chen .
ANALYTICAL BIOCHEMISTRY, 2015, 490 :26-33
[8]   Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome [J].
Chen, Wei ;
Tran, Hong ;
Liang, Zhiyong ;
Lin, Hao ;
Zhang, Liqing .
SCIENTIFIC REPORTS, 2015, 5
[9]   m6A modification of non-coding RNA and the control of mammalian gene expression [J].
Coker, Heather ;
Wei, Guifeng ;
Brockdorff, Neil .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2019, 1862 (03) :310-318
[10]  
CSEPANY T, 1990, J BIOL CHEM, V265, P20117