Stringent numerical test of the Poisson distribution for finite quantum integrable Hamiltonians -: art. no. 026208

被引:0
作者
Relaño, A
Dukelsky, J
Gómez, JMG
Retamosa, J
机构
[1] Univ Complutense Madrid, Dept Fis Atom Mol & Nucl, E-28040 Madrid, Spain
[2] CSIC, Inst Estructura Mat, E-28006 Madrid, Spain
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 02期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using a class of exactly solvable models based on the pairing interaction, we show that it is possible to construct integrable Hamiltonians with a Wigner distribution of nearest-neighbor level spacings. However, these Hamiltonians involve many-body interactions and the addition of a small integrable perturbation very quickly leads the system to a Poisson distribution. Besides this exceptional case, we show that the accumulated distribution of an ensemble of random integrable two-body pairing Hamiltonians is in perfect agreement with the Poisson limit. These numerical results for quantum integrable Hamiltonians provide a further empirical confirmation of the work of Berry and Tabor in the semiclassical limit.
引用
收藏
页数:5
相关论文
共 18 条
[1]   CHAOS IN THE LOW-LYING COLLECTIVE STATES OF EVEN-EVEN NUCLEI - QUANTAL FLUCTUATIONS [J].
ALHASSID, Y ;
NOVOSELSKY, A .
PHYSICAL REVIEW C, 1992, 45 (04) :1677-1687
[2]   Wigner-Dyson statistics for a class of integrable models [J].
Benet, L ;
Leyvraz, F ;
Seligman, TH .
PHYSICAL REVIEW E, 2003, 68 (04) :452011-452013
[3]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[4]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[5]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[6]   ENERGY-LEVEL STATISTICS OF INTEGRABLE QUANTUM-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1350-1353
[7]   CHAOTIC SPECTRA OF CLASSICALLY INTEGRABLE SYSTEMS [J].
CREHAN, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22) :6389-6394
[8]  
DAURIAC JCA, CONDMAT0205101
[9]   Class of exactly solvable pairing models [J].
Dukelsky, J ;
Esebbag, C ;
Schuck, P .
PHYSICAL REVIEW LETTERS, 2001, 87 (06) :664031-664034
[10]   Misleading signatures of quantum chaos -: art. no. 036209 [J].
Gómez, JMG ;
Molina, RA ;
Relaño, A ;
Retamosa, J .
PHYSICAL REVIEW E, 2002, 66 (03)