ON QUANTUM BRST COHOMOLOGY

被引:0
作者
Bentalha, Z. [1 ]
Tahiri, M. [2 ]
机构
[1] Univ Tlemcen, Phys Theor Lab, Tilimsen, Algeria
[2] Univ Oran Es Senia, Phys Theor Lab, Oran 31100, Algeria
关键词
Noncommutative geometry; bicovariant differential calculus; quantum groups; quantum BRST symmetry; quantum cohomology; quantum Lie algebra; COMPACT LIE-ALGEBRAS; DIFFERENTIAL-CALCULUS;
D O I
10.1142/S0219887809004144
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Within bicovariant differential calculi framework, the BRST operator Omega is constructed. We showed that Omega is nil-potent (Omega(2) = 0).
引用
收藏
页码:1151 / 1160
页数:10
相关论文
共 11 条
[1]  
[Anonymous], 1995, Quantum Group Symmetry and q-Tensor Algebras
[2]   RENORMALIZATION OF ABELIAN HIGGS-KIBBLE MODEL [J].
BECCHI, C ;
ROUET, A ;
STORA, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 42 (02) :127-162
[3]   A new approach in bicovariant differential calculus on SUq(2) [J].
Bentalha, Z. ;
Tahiri, M. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (07) :1087-1097
[4]   QUANTUM GROUP AND QUANTUM SYMMETRY [J].
CHANG, Z .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 262 (3-4) :137-225
[5]   Higher-order BRST and anti-BRST operators and cohomology for compact Lie algebras [J].
Chryssomalakos, C ;
de Azcárraga, JA ;
Macfarlane, AJ ;
Bueno, JCP .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (11) :6009-6032
[6]   HAMILTONIAN FORM OF THE PATH INTEGRAL FOR THEORIES WITH A GAUGE FREEDOM [J].
HENNEAUX, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 126 (01) :1-66
[7]   BRST operator for quantum Lie algebras and differential calculus on quantum groups [J].
Isaev, AP ;
Ogievetsky, OV .
THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 129 (02) :1558-1572
[8]   QUANTUM BRST COHOMOLOGY [J].
KUNZ, J ;
MASLANKA, P ;
GILER, S ;
KOSINSKI, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (18) :4235-4239
[9]   THE BRST COMPLEX AND THE COHOMOLOGY OF COMPACT LIE-ALGEBRAS [J].
VANHOLTEN, JW .
NUCLEAR PHYSICS B, 1990, 339 (01) :158-176
[10]   DIFFERENTIAL-CALCULUS ON COMPACT MATRIX PSEUDOGROUPS (QUANTUM GROUPS) [J].
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (01) :125-170