Modulating the temporal dynamics of nonlinear ultrafast plasmon resonances

被引:5
作者
Asif, Hira [1 ]
Sahin, Ramazan [1 ]
机构
[1] Akdeniz Univ, Fac Sci, Dept Phys, TR-07058 Antalya, Turkey
关键词
nonlinear plasmon mode; lifetime enhancement; quantum emitter;
D O I
10.1088/2040-8986/ac58a3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Surface plasmon-induced nonlinear optical resonances have shown immense potential in advanced optical imaging and nonlinear photonic devices. However, the ultrashort lifetime of these intense nonlinear fields inhibits their effective use in the vast applications of quantum plasmonics. Here, we propose enhancement in the lifetime of fast decaying second harmonic (SH) plasmon mode through a weak and pure resonant interaction with a two-level quantum emitter (QE). We compute the time evolution of SH response under a two-coupled oscillator model, in which we examine the interaction of short-lived SH mode supported by Au nanoparticle (AuNP) with long-lived dark mode (DM) or QE systems. To analyze the effect of spectral and temporal properties of DM and QE on the SH field, we evaluate the lifetime enhancement factor as a function of coupling strength and tuned resonant frequencies. The results show that tiny object like QE with sharp spectral bandwidth, small decay rate, and large oscillating strength is more efficient to control and probe the temporal dynamics of the SH field, as compared to DM which have a wide spectral bandwidth. Also, we control the lifetime of the SH mode after the natural decay time of the fundamental mode (FM), which distinguishes SH mode irrespective of its spatial convolution with elementary modes. Our proposed AuNP-QE coupled plasmonic system supporting nonlinear signal with enhanced temporal character paves its way for designing efficient on-chip nonlinear optical devices and can be a powerful tool in ultrahigh resolution nonlinear optical imaging.
引用
收藏
页数:8
相关论文
共 30 条
[11]   Linear ultrafast dynamics of plasmon and magnetic resonances in nanoparticles [J].
Lazzarini, Carlo Maria ;
Tadzio, Levato ;
Fitzgerald, Jamie M. ;
Sanchez-Gil, Jose A. ;
Giannini, Vincenzo .
PHYSICAL REVIEW B, 2017, 96 (23)
[12]  
Luk'yanchuk B, 2010, NAT MATER, V9, P707, DOI [10.1038/NMAT2810, 10.1038/nmat2810]
[13]   Room-temperature sub-diffraction-limited plasmon laser by total internal reflection [J].
Ma, Ren-Min ;
Oulton, Rupert F. ;
Sorger, Volker J. ;
Bartal, Guy ;
Zhang, Xiang .
NATURE MATERIALS, 2011, 10 (02) :110-113
[14]   On surface plasmon damping in metallic nanoparticles [J].
Melikyan, A ;
Minassian, H .
APPLIED PHYSICS B-LASERS AND OPTICS, 2004, 78 (3-4) :453-455
[15]   Demonstration of a spaser-based nanolaser [J].
Noginov, M. A. ;
Zhu, G. ;
Belgrave, A. M. ;
Bakker, R. ;
Shalaev, V. M. ;
Narimanov, E. E. ;
Stout, S. ;
Herz, E. ;
Suteewong, T. ;
Wiesner, U. .
NATURE, 2009, 460 (7259) :1110-1112
[16]   Single-molecule-resolution ultrafast near-field optical microscopy via plasmon lifetime extension [J].
Ovali, Rasim Volga ;
Sahin, Ramazan ;
Bek, Alpan ;
Tasgin, Mehmet Emre .
APPLIED PHYSICS LETTERS, 2021, 118 (24)
[17]   Nonlinear optics in plasmonic nanostructures [J].
Panoiu, N. C. ;
Sha, W. E. I. ;
Lei, D. Y. ;
Li, G-C .
JOURNAL OF OPTICS, 2018, 20 (08)
[18]   Silent enhancement of SERS signa without increasing hot spot intensities [J].
Postaci, Selen ;
Yildiz, Bilge Can ;
Bek, Alpan ;
Tasgin, Mehmet Emre .
NANOPHOTONICS, 2018, 7 (10) :1687-1695
[19]   Optical properties of metallic films for vertical-cavity optoelectronic devices [J].
Rakic, AD ;
Djurisic, AB ;
Elazar, JM ;
Majewski, ML .
APPLIED OPTICS, 1998, 37 (22) :5271-5283
[20]  
Raschke MB, 2013, CHALL ADV COMPUT CHE, V15, P237, DOI 10.1007/978-94-007-7805-4_7