CONDITIONS FOR PERMANENCE AND ERGODICITY OF CERTAIN STOCHASTIC PREDATOR-PREY MODELS

被引:125
作者
Nguyen Huu Du [1 ]
Dang Hai Nguyen [2 ]
Yin, G. George [2 ]
机构
[1] Hanoi Natl Univ, Dept Math Mech & Informat, 334 Nguyen Trai, Hanoi, Vietnam
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
Ergodicity; extinction; permanence; predator-prey; Beddington-DeAngelis functional response; stationary distribution; DEGENERATE ELLIPTIC-OPERATORS; LOTKA-VOLTERRA MODEL; CLASSIFICATION; BEHAVIOR;
D O I
10.1017/jpr.2015.18
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we derive sufficient conditions for the permanence and ergodicity of a stochastic predator-prey model with a Beddington-DeAngelis functional response. The conditions obtained are in fact very close to the necessary conditions. Both nondegenerate and degenerate diffusions are considered. One of the distinctive features of our results is that they enable the characterization of the support of a unique invariant probability measure. It proves the convergence in total variation norm of the transition probability to the invariant measure. Comparisons to the existing literature and matters related to other stochastic predator-prey models are also given.
引用
收藏
页码:187 / 202
页数:16
相关论文
共 26 条
[1]  
[Anonymous], 1998, EVOLUTIONARY GAMES P
[2]  
[Anonymous], 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[3]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[4]   MODEL FOR TROPHIC INTERACTION [J].
DEANGELIS, DL ;
GOLDSTEIN, RA ;
ONEILL, RV .
ECOLOGY, 1975, 56 (04) :881-892
[5]   Dynamics of a stochastic Lotka-Volterra model perturbed by white noise [J].
Du, Nguyen Huu ;
Sam, Vu Hai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :82-97
[6]  
Hasminskii RZ., 1960, Teor. Verojatnost. i Primenen, V5, P196, DOI DOI 10.1137/1105016
[7]  
HOLLING C. S., 1959, CANADIAN ENT, V91, P293
[8]   CLASSIFICATION OF SECOND ORDER DEGENERATE ELLIPTIC OPERATORS AND ITS PROBABILISTIC CHARACTERIZATION [J].
ICHIHARA, K ;
KUNITA, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (03) :235-254
[9]   CLASSIFICATION OF 2ND ORDER DEGENERATE ELLIPTIC OPERATORS AND ITS PROBABILISTIC CHARACTERIZATION [J].
ICHIHARA, K ;
KUNITA, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (01) :81-84
[10]   Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response [J].
Ji, Chunyan ;
Jiang, Daqing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (01) :441-453