Tree Species Classification Based on Hybrid Ensembles of a Convolutional Neural Network (CNN) and Random Forest Classifiers

被引:38
作者
Knauer, Uwe [1 ]
von Rekowski, Cornelius Styp [2 ]
Stecklina, Marianne [2 ]
Krokotsch, Tilman [2 ]
Tuan Pham Minh [2 ]
Hauffe, Viola [2 ]
Kilias, David [1 ]
Ehrhardt, Ina [1 ]
Sagischewski, Herbert [3 ]
Chmara, Sergej [3 ]
Seiffert, Udo [1 ]
机构
[1] Fraunhofer Inst Factory Operat & Automat, D-39106 Magdeburg, Germany
[2] Otto von Guericke Univ, Fac Comp Sci, D-39106 Magdeburg, Germany
[3] Forstl Forsch & Kompetenzzentrum, ThuringenForst AoR, D-99867 Gotha, Germany
关键词
hyperspectral imaging; tree species; multiple classifier fusion; convolutional neural network; random forest; rotation forest; HYPERSPECTRAL DATA; REFLECTANCE; SVM;
D O I
10.3390/rs11232788
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, we evaluate different popular voting strategies for fusion of classifier results. A convolutional neural network (CNN) and different variants of random forest (RF) classifiers were trained to discriminate between 15 tree species based on airborne hyperspectral imaging data. The spectral data was preprocessed with a multi-class linear discriminant analysis (MCLDA) as a means to reduce dimensionality and to obtain spatial-spectral features. The best individual classifier was a CNN with a classification accuracy of 0.73 +/- 0.086. The classification performance increased to an accuracy of 0.78 +/- 0.053 by using precision weighted voting for a hybrid ensemble of the CNN and two RF classifiers. This voting strategy clearly outperformed majority voting (0.74), accuracy weighted voting (0.75), and presidential voting (0.75).
引用
收藏
页数:15
相关论文
共 36 条
[1]  
[Anonymous], 2013, STAT LEARNING THEORY
[2]   Spatially regularized semisupervised Ensembles of Extreme Learning Machines for hyperspectral image segmentation [J].
Ayerdi, Borja ;
Marques, Ion ;
Grana, Manuel .
NEUROCOMPUTING, 2015, 149 :373-386
[3]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[4]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   A novel transductive SVM for semisupervised classification of remote-sensing images [J].
Bruzzone, Lorenzo ;
Chi, Mingmin ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3363-3373
[7]   Individual variation in the phenology of oak trees and its consequences for herbivorous insects [J].
Crawley, M. J. ;
Akhteruzzaman, M. .
FUNCTIONAL ECOLOGY, 1988, 2 (03) :409-415
[8]   Semi-supervised SVM for individual tree crown species classification [J].
Dalponte, Michele ;
Ene, Liviu Theodor ;
Marconcini, Mattia ;
Gobakken, Terje ;
Naesset, Erik .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 110 :77-87
[9]   Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data [J].
Dalponte, Michele ;
Bruzzone, Lorenzo ;
Gianelle, Damiano .
REMOTE SENSING OF ENVIRONMENT, 2012, 123 :258-270
[10]  
Didaci Luca, 2013, Multiple Classifier Systems. 11th International Workshop, MCS 2013. Proceedings, P37, DOI 10.1007/978-3-642-38067-9_4