Advances in Thermoelectric Mg3Sb2 and Its Derivatives

被引:126
作者
Shi, Xuemin [1 ]
Wang, Xiao [1 ]
Li, Wen [1 ]
Pei, Yanzhong [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Interdisciplinary Mat Res Ctr, 4800 Caoan Rd, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
band engineering; less-toxic elements; Mg3Sb2; thermoelectric; Zintl compounds; ZINTL PHASE-COMPOUNDS; THERMAL-CONDUCTIVITY; POINT-DEFECTS; PERFORMANCE; FIGURE; SCATTERING; CHEMISTRY; COMPOUND; MERIT; CA1-XEUXZN2SB2;
D O I
10.1002/smtd.201800022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Over the past couple of decades, thermoelectric Mg3Sb2 and its derivatives have attracted increasing attention for thermoelectric applications. This is enabled by the richness in composition for manipulating both electronic and thermal properties and by the intrinsic low lattice thermal conductivity. With existing efforts on these materials, the thermoelectric figure of merit has been significantly improved to compete with conventional thermoelectrics, while many of these materials keep the compositions cheap and less-toxic elements only. Here, not only the control of defects, band structure, electronic transport properties, and lattice thermal conductivity for these materials, but also the proven strategies on transport property manipulation are summarized. These strategies are well demonstrated for advancing thermoelectric Mg3Sb2 and its derivatives, and the principles used are believed to be equally applicable for many other thermoelectric materials. In addition, perspectives for possible further advancements in this class of thermoelectric materials are shown.
引用
收藏
页数:10
相关论文
共 85 条
[1]   LATTICE THERMAL CONDUCTIVITY OF DISORDERED SEMICONDUCTOR ALLOYS AT HIGH TEMPERATURES [J].
ABELES, B .
PHYSICAL REVIEW, 1963, 131 (05) :1906-&
[2]   Structural and physical properties of Mg3-xZnxSb2 (x=0-1.34) [J].
Ahmadpour, Faraz ;
Kolodiazhnyi, Taras ;
Mozharivskyj, Yurij .
JOURNAL OF SOLID STATE CHEMISTRY, 2007, 180 (09) :2420-2428
[3]   Thermal Cycling, Mechanical Degradation, and the Effective Figure of Merit of a Thermoelectric Module [J].
Barako, M. T. ;
Park, W. ;
Marconnet, A. M. ;
Asheghi, M. ;
Goodson, K. E. .
JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (03) :372-381
[4]   Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit [J].
Bhardwaj, A. ;
Chauhan, N. S. ;
Goel, S. ;
Singh, Vijeta ;
Pulikkotil, J. J. ;
Senguttuvan, T. D. ;
Misra, D. K. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (08) :6191-6200
[5]   Significantly enhanced thermoelectric figure of merit of p-type Mg3Sb2-based Zintl phase compounds via nanostructuring and employing high energy mechanical milling coupled with spark plasma sintering [J].
Bhardwaj, A. ;
Chauhan, N. S. ;
Misra, D. K. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (20) :10777-10786
[6]   Enhancing thermoelectric properties of a p-type Mg3Sb2- based Zintl phase compound by Pb substitution in the anionic framework [J].
Bhardwaj, A. ;
Misra, D. K. .
RSC ADVANCES, 2014, 4 (65) :34552-34560
[7]   Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation [J].
Bhardwaj, A. ;
Rajput, A. ;
Shukla, A. K. ;
Pulikkotil, J. J. ;
Srivastava, A. K. ;
Dhar, A. ;
Gupta, Govind ;
Auluck, S. ;
Misra, D. K. ;
Budhani, R. C. .
RSC ADVANCES, 2013, 3 (22) :8504-8516
[8]   THERMODYNAMICS OF DEFECT FORMATION AND DEFECT INTERACTION IN COMPOUND SEMICONDUCTORS [J].
BULYARSKII, SV ;
OLEINIKOV, VP .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1988, 146 (02) :439-447
[9]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[10]   Zintl phase Yb1-xCaxCd2Sb2 with tunable thermoelectric properties induced by cation substitution [J].
Cao, Qi-Gao ;
Zhang, Hui ;
Tang, Mei-Bo ;
Chen, Hao-Hong ;
Yang, Xin-Xin ;
Grin, Yuri ;
Zhao, Jing-Tai .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)