Local asymptotic normality and efficient estimation for multivariate GINAR(p) models

被引:0
作者
Shiraishi, Hiroshi [1 ]
机构
[1] Keio Univ, Dept Math, Yokohama, Kanagawa, Japan
来源
COGENT MATHEMATICS & STATISTICS | 2019年 / 6卷
关键词
integer-valued time series; thinning operations; LAN; efficient estimation;
D O I
10.1080/25742558.2019.1695437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive the Local Asymptotic Normality (LAN) property for a multivariate generalized integer-valued autoregressive (MGINAR) process with order p. The generalized thinning operator in the MGINAR(p) process includes not only the usual Binomial thinning but also Poisson thinning, geometric thinning, Negative Binomial thinning and so on. By using the LAN property, we propose an efficient estimation method for the parameter of the MGINAR(p) process. Our procedure is based on the one-step method, which update initial root n-consistent estimators to efficient ones. The one-step method has advantages in both computational simplicity and efficiency. Some numerical results for the asymptotic relative efficiency (ARE) of our estimators and the CLS estimators are presented. In addition, a real data analysis is provided to illustrate the application of the proposed estimation method.
引用
收藏
页数:18
相关论文
共 15 条
[1]  
AlOsh MA., 1987, Journal of Time Series Analysis, V8, P261, DOI [10.1111/j.1467-9892.1987.tb00438.x, DOI 10.1111/JTSA.1987.8.ISSUE-3]
[2]   AN INTEGER-VALUED PTH-ORDER AUTOREGRESSIVE STRUCTURE (INAR(P)) PROCESS [J].
ALZAID, AA ;
ALOSH, M .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (02) :314-324
[3]   MAXIMUM LIKELIHOOD ESTIMATION OF HIGHER-ORDER INTEGER-VALUED AUTOREGRESSIVE PROCESSES [J].
Bu, Ruijun ;
McCabe, Brendan ;
Hadri, Kaddour .
JOURNAL OF TIME SERIES ANALYSIS, 2008, 29 (06) :973-994
[4]  
Cox D. R., 1974, THEORETICAL STAT
[5]   Local asymptotic normality and efficient estimation for INAR(p) models [J].
Drost, Feike C. ;
Van Den Akker, Ramon ;
Werker, Bas J. M. .
JOURNAL OF TIME SERIES ANALYSIS, 2008, 29 (05) :783-801
[6]  
Du J.G., 1991, Journal of Time Series Analysis, V12, P129, DOI 10.1111/j.1467-9892.1991.tb00073.x
[7]  
Franke J., 1993, Technical report. No. 95
[8]   Flexible Bivariate INAR(1) Processes Using Copulas [J].
Karlis, Dimitris ;
Pedeli, Xanthi .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (04) :723-740
[9]   The multivariate GINAR(p) process [J].
Latour, A .
ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) :228-248
[10]  
Latour A., 1998, Journal of Time Series Analysis, V19, P439, DOI [10.1111/1467-9892.00102, DOI 10.1111/1467-9892.00102]