Stochastic volatility;
Semiparametric estimation;
Sequential Monte Carlo filtering;
Bayesian estimation;
CHAIN MONTE-CARLO;
D O I:
10.1016/j.cam.2018.05.036
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The first-order nonlinear autoregressive model with the stochastic volatility as the model of dependent innovations is considered and a semiparametric method is proposed to estimate the unknown function. Optimal filtering technique based on sequential Monte Carlo perspective is used for estimation of the hidden log-volatility in this model. Bayesian paradigm is applied for estimation of both the unknown parameters and hidden process using particle marginal Metropolis-Hastings scheme. Furthermore, an empirical application on simulated data and on the monthly excess returns of S&P 500 index is presented to study the performance of the schemes implemented. (C) 2018 Elsevier B.V. All rights reserved.
机构:
Department of Mathematics and Computer Sciences, Abdelhafid Boussouf University, Center of Mila, MilaDepartment of Mathematics and Computer Sciences, Abdelhafid Boussouf University, Center of Mila, Mila
Ghezal A.
Zemmouri I.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, University of Annaba, Elhadjar 23, AnnabaDepartment of Mathematics and Computer Sciences, Abdelhafid Boussouf University, Center of Mila, Mila
机构:
Univ Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
Abanto-Valle, C. A.
Lachos, V. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Dept Stat, BR-13083859 Campinas, SP, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
Lachos, V. H.
Dey, Dipak K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Stat, Storrs, CT 06269 USAUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil