Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface

被引:27
|
作者
Batula, Alyssa M. [1 ]
Kim, Youngmoo E. [1 ]
Ayaz, Hasan [2 ,3 ,4 ]
机构
[1] Drexel Univ, Dept Elect & Comp Engn, 3141 Chestnut St, Philadelphia, PA 19104 USA
[2] Drexel Univ, Sch Biomed Engn Sci & Hlth Syst, 3141 Chestnut St, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Family & Community Hlth, 3737 Market St, Philadelphia, PA 19104 USA
[4] Childrens Hosp Philadelphia, Div Gen Pediat, 3401 Civ Ctr Blvd, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
NEAR-INFRARED SPECTROSCOPY; CLASSIFICATION; MACHINE; EXECUTION; SIGNALS; TASK;
D O I
10.1155/2017/1463512
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motorimagery tasks, limiting the number of available commands. In thiswork, we present the results of the first four-class motor-imagerybased online fNIRS-BCI for robot control. Thirteen participants utilized upper-and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Bipolar electrode selection for a motor imagery based brain-computer interface
    Lou, Bin
    Hong, Bo
    Gao, Xiaorong
    Gao, Shangkai
    JOURNAL OF NEURAL ENGINEERING, 2008, 5 (03) : 342 - 349
  • [42] Design of electrode layout for motor imagery based brain-computer interface
    Wang, Y.
    Hong, B.
    Gao, X.
    Gao, S.
    ELECTRONICS LETTERS, 2007, 43 (10) : 557 - 558
  • [43] A Predictive Speller Controlled by a Brain-Computer Interface Based on Motor Imagery
    D'Albis, Tiziano
    Blatt, Rossella
    Tedesco, Roberto
    Sbattella, Licia
    Matteucci, Matteo
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2012, 19 (03)
  • [44] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794
  • [45] Design of a Robotic Wheelchair with a Motor Imagery based Brain-Computer Interface
    Kim, Keun-Tae
    Carlson, Tom
    Lee, Seong-Whan
    2013 IEEE INTERNATIONAL WINTER WORKSHOP ON BRAIN-COMPUTER INTERFACE (BCI), 2013, : 46 - 48
  • [46] A Novel Classification Method for Motor Imagery Based on Brain-Computer Interface
    Chen, Chih-Yu
    Wu, Chun-Wei
    Lin, Chin-Teng
    Chen, Shi-An
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4099 - 4102
  • [47] Asynchronous Brain-Computer Interface with Foot Motor Imagery
    Sun, Meng
    Akiyoshi, Hiroyuki
    Igasaki, Tomohiko
    Murayama, Nobuki
    2013 ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING (CME), 2013, : 191 - 196
  • [48] Brain-actuated Humanoid Robot Navigation Control using Asynchronous Brain-Computer Interface
    Chae, Yongwook
    Jo, Sungho
    Jeong, Jaeseung
    2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2011, : 519 - 524
  • [49] Classification of motor imagery tasks for electrocorticogram based brain-computer interface
    Xu F.
    Zhou W.
    Zhen Y.
    Yuan Q.
    Zhou, W. (wdzhou@sdu.edu.cn), 1600, Springer Verlag (04): : 149 - 157
  • [50] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47