E-MFDBSCAN: an evolutionary clustering algorithm for gene expression time series

被引:0
作者
Erdem, Atakan [1 ]
Gundem, Taflan Imre [1 ]
机构
[1] Bogazici Univ, Dept Comp Engn, Istanbul, Turkey
关键词
Microarray experiment; gene expression; evolutionary clustering; prediction; uncertain data; time series;
D O I
10.3906/elk-1609-163
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
DNA microarray experiments are frequently used because they have various advantages. However, gene expression data from DNA microarray experiments are noisy, and, consequently, the computations that are based on such noisy data may lack accuracy. In this paper, an evolutionary uncertain data-clustering algorithm, E-MFDBSCAN, and a prediction model using E-MFDBSCAN for uncertain data are proposed. The proposed methodology may be successfully applied to noisy gene expression data. In this methodology, global patterns of time series data can be extracted using our evolutionary clustering approach. These patterns are used to infer future projections. In the proposed methodology, an autoregressive time series function (using these patterns) used to predict the similarities among sets of gene expression clusters is constructed. The algorithms are tested with two different gene expression time series datasets.
引用
收藏
页码:3443 / 3454
页数:12
相关论文
共 28 条
[1]   Aligning gene expression time series with time warping algorithms [J].
Aach, J ;
Church, GM .
BIOINFORMATICS, 2001, 17 (06) :495-508
[2]  
Bar-Joseph Z., 2002, P 6 ANN INT C COMP B, P39, DOI DOI 10.1145/565196.565202
[3]   PROBABILISTIC NON-NEGATIVE MATRIX FACTORIZATION: THEORY AND APPLICATION TO MICROARRAY DATA ANALYSIS [J].
Bayar, Belhassen ;
Bouaynaya, Nidhal ;
Shterenberg, Roman .
JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2014, 12 (01)
[4]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[5]  
D'haeseleer P, 1999, Pac Symp Biocomput, P41
[6]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[7]   M-FDBSCAN: A multicore density-based uncertain data clustering algorithm [J].
Erdem, Atakan ;
Gundem, Taflan Imre .
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2014, 22 (01) :143-154
[8]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[9]   supraHex: An R/Bioconductor package for tabular omics data analysis using a supra-hexagonal map [J].
Fang, Hai ;
Gough, Julian .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 443 (01) :285-289
[10]  
Goldberg Mark K., 2010, Proceedings of the 2010 IEEE Second International Conference on Social Computing (SocialCom 2010). the Second IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT 2010), P303, DOI 10.1109/SocialCom.2010.50