A 120-150 GHz Power Amplifier in 28-nm CMOS Achieving 21.9-dB Gain and 11.8-dBm Psat for Sub-THz Imaging System

被引:24
作者
Zhang, Jincheng [1 ]
Wu, Tianxiang [1 ]
Nie, Lihe [1 ]
Ma, Shunli [1 ]
Chen, Yong [2 ,3 ]
Ren, Junyan [1 ]
机构
[1] Fudan Univ, State Key Lab ASIC & Syst, Shanghai 201203, Peoples R China
[2] Univ Macau, State Key Lab Analog & Mixed Signal VLSI, Macau 999078, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Dept Elect & Comp Engn, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Logic gates; Transistors; Feeds; Resistance; Layout; Imaging; Topology; D-band; power amplifier (PA); sub-terahertz (sub-THz); CMOS; power combining; imaging system; frequency modulated continuous wave (FMCW); D-BAND; OPTIMIZATION; DESIGN;
D O I
10.1109/ACCESS.2021.3080710
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a high-gain D-band power amplifier (PA) fabricated with 28-nm CMOS technology for a sub-terahertz frequency modulated continuous wave imaging system. It adopts two-channel power combining using artificial transmission lines to absorb the parasitic capacitance of the ground-signal-ground pad. The layout of the transistors and neutralization capacitors are optimized to improve the maximum stable gain, stability, and robustness. Asymmetrically magnetically coupled resonators are used in inter-stage and input matching networks to extend the operating bandwidth. The PA achieves a peak power gain of 21.9 dB and maximum output power of 11.8 dBm with 10.7% of power-added efficiency. Also, this PA can achieve higher than 10 dBm output power over the frequency range of 120-150 GHz.
引用
收藏
页码:74752 / 74762
页数:11
相关论文
共 26 条
[1]   Improvement of AM-PM in a 33-GHz CMOS SOI Power Amplifier Using pMOS Neutralization [J].
Abdulaziz, Mohammed ;
Hunerli, Halil Volkan ;
Buisman, Koen ;
Fager, Christian .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (12) :798-801
[2]  
Ali A., 2020, IEEE ACCESS, V8, P79289
[3]  
[Anonymous], 2009, J CHEMICALPHYSICSLET
[4]   Wiring Effect Optimization in 65-nm Low-Power NMOS [J].
Chan, Chih-Yuan ;
Chen, San-Chuan ;
Tsai, Ming-Hsien ;
Hsu, Shawn S. H. .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (11) :1245-1248
[5]   D-Band and G-Band High-Performance GaN Power Amplifier MMICs [J].
Cwiklinski, Maciej ;
Brueckner, Peter ;
Leone, Stefano ;
Friesicke, Christian ;
Mabler, Hermann ;
Lozar, Roger ;
Wagner, Sandrine ;
Quay, Ruediger ;
Ambacher, Oliver .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (12) :5080-5089
[6]  
Cwiklinski M, 2019, IEEE MTT S INT MICR, P1257
[7]   A Broadband and Equivalent-Circuit Model for Millimeter-Wave On-Chip M:N Six-Port Transformers and Baluns [J].
Gao, Zongzhi ;
Kang, Kai ;
Zhao, Chenxi ;
Wu, Yunqiu ;
Ban, Yonglin ;
Sun, Lingling ;
Hong, Wei ;
Xue, Quan .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) :3109-3121
[8]   A Full Ka-Band Power Amplifier With 32.9% PAE and 15.3-dBm Power in 65-nm CMOS [J].
Jia, Haikun ;
Prawoto, Clarissa C. ;
Chi, Baoyong ;
Wang, Zhihua ;
Yue, C. Patrick .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (09) :2657-2668
[9]  
Katayama K, 2013, EUR MICROW INTEGRAT, P69
[10]   Accurate Transistor Modeling by Three-Parameter Pad Model for Millimeter-Wave CMOS Circuit Design [J].
Kawai, Seitaro ;
Sato, Shinji ;
Maki, Shotaro ;
Tokgoz, Korkut Kaan ;
Okada, Kenichi ;
Matsuzawa, Akira .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (06) :1736-1744