Modeling Study of pH Distribution and Non-Equilibrium State of Water in Hydrogen Evolution Reaction

被引:1
作者
Feng, Zhange [1 ]
Xie, Yuanyuan [2 ]
Han, Qi [1 ]
机构
[1] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
[2] Calif State Univ Fresno, Dept Mech Engn, Fresno, CA 93740 USA
关键词
COBALT ELECTRODES; DEPOSITION; NANOCHANNEL; SUPEROXIDE; REDUCTION; GROWTH; H+;
D O I
10.1149/2.0312001JES
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
pH distribution and non-equilibrium state of water in hydrogen evolution reaction are studied using continuum models. In the first model, we analyze the pH distribution in a rotating ring disk electrode system, where the hydrogen evolution occurs on the disk electrode. The model predicts a pH distribution comparable to the experimental data and the nonequilibrium state of water (cH*cOH>1.0 x 10(-14)) in a small portion of the diffusion layer (ca. 5 mu m in thickness) adjacent to the bulk electrolyte under forced convection. The second model explores the pH distribution on an electrode with nanovoids in hydrogen evolution reaction in an acidic media. The value of cH*cOH shifts significantly when close to the electrode surface, e.g., <= 2 mu m, indicating pH is not viable to assess its impact on an electrochemical reaction involving hydroxide ions. Modeling results also prove that, for an electrode with nanovoids, the concentration gradient of hydroxide between the plain field and the bottom of the nanovoid is minimal. Therefore it should not be the root cause for the differential kinetics of metal electrodeposition inside/outside the nanovoids. (C) The Author(s) 2019. Published by ECS.
引用
收藏
页数:7
相关论文
共 50 条
[11]   Simulation of interfacial pH changes during hydrogen evolution reaction [J].
Carneiro-Neto, Evaldo B. ;
Lopes, Mauro C. ;
Pereira, Ernesto C. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 765 :92-99
[12]   Solute trapping in non-equilibrium solidification: A comparative model study [J].
Reuther, Klemens ;
Hubig, Stephan ;
Steinbach, Ingo ;
Rettenmayr, Markus .
MATERIALIA, 2019, 6
[13]   Unified Analysis of Non-Equilibrium Solidification and Solid-State Phase Transformations [J].
Liu Feng ;
Zhang Xu ;
Zhang Yubing .
ACTA METALLURGICA SINICA, 2018, 54 (05) :701-716
[14]   Effects of rapid heating on non-equilibrium microstructure evolution and strengthening mechanisms of titanium alloy [J].
Chang, Shupeng ;
Wang, Kehuan ;
Wang, Bin ;
Kopec, Mateusz ;
Li, Zhe ;
Wang, Liliang ;
Liu, Gang .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 880
[15]   Non-equilibrium effect modeling and particle velocity estimation for particulate flow in porous media [J].
Jin, Yi ;
Zhang, Zenghua ;
Moghanloo, Rouzbeh Ghanbarnezhad .
FRONTIERS IN EARTH SCIENCE, 2023, 11
[16]   Information theoretic clustering for coarse-grained modeling of non-equilibrium gas dynamics [J].
Jacobsen, Christian ;
Zanardi, Ivan ;
Bhola, Sahil ;
Duraisamy, Karthik ;
Panesi, Marco .
JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 507
[17]   Assembly of carbon nanotubes into microparticles with tunable morphologies using droplets in a non-equilibrium state [J].
Tomii, Sakurako ;
Yamada, Masumi ;
Mizuno, Masahiro ;
Yamada, Yasuhiro ;
Kojima, Takashi ;
Kushida, Masahito ;
Seki, Minoru .
RSC ADVANCES, 2017, 7 (29) :17773-17780
[18]   Effect of precursor pH on AuNP/MWCNT nanocomposites synthesized by plasma-induced non-equilibrium electrochemistry [J].
Sun, Daye ;
Maddi, Chiranjeevi ;
Rafferty, Cormac ;
Tang, Miao ;
Chen, Mei ;
Falzon, Brian G. ;
Sarri, Gianluca ;
Mariotti, Davide ;
Maguire, Paul ;
Sun, Dan .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (42)
[19]   Kinetic modeling of phase selection during non-equilibrium solidification of a tungsten-carbon system [J].
Demetriou, MD ;
Ghoniem, NM ;
Lavine, AS .
ACTA MATERIALIA, 2002, 50 (06) :1421-1432
[20]   Thermal transport engineering in amorphous graphene: Non-equilibrium molecular dynamics study [J].
Bazrafshan, Saeed ;
Rajabpour, Ali .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 112 :379-386