Modeling Study of pH Distribution and Non-Equilibrium State of Water in Hydrogen Evolution Reaction

被引:1
|
作者
Feng, Zhange [1 ]
Xie, Yuanyuan [2 ]
Han, Qi [1 ]
机构
[1] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
[2] Calif State Univ Fresno, Dept Mech Engn, Fresno, CA 93740 USA
关键词
COBALT ELECTRODES; DEPOSITION; NANOCHANNEL; SUPEROXIDE; REDUCTION; GROWTH; H+;
D O I
10.1149/2.0312001JES
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
pH distribution and non-equilibrium state of water in hydrogen evolution reaction are studied using continuum models. In the first model, we analyze the pH distribution in a rotating ring disk electrode system, where the hydrogen evolution occurs on the disk electrode. The model predicts a pH distribution comparable to the experimental data and the nonequilibrium state of water (cH*cOH>1.0 x 10(-14)) in a small portion of the diffusion layer (ca. 5 mu m in thickness) adjacent to the bulk electrolyte under forced convection. The second model explores the pH distribution on an electrode with nanovoids in hydrogen evolution reaction in an acidic media. The value of cH*cOH shifts significantly when close to the electrode surface, e.g., <= 2 mu m, indicating pH is not viable to assess its impact on an electrochemical reaction involving hydroxide ions. Modeling results also prove that, for an electrode with nanovoids, the concentration gradient of hydroxide between the plain field and the bottom of the nanovoid is minimal. Therefore it should not be the root cause for the differential kinetics of metal electrodeposition inside/outside the nanovoids. (C) The Author(s) 2019. Published by ECS.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] An effective continuum approach for modeling non-equilibrium structural evolution of protein nanofiber networks
    Cheng, Liang
    Englander, Ongi
    Paravastu, Anant
    Oates, William S.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (05)
  • [2] Non-equilibrium island size distribution in one dimension
    Syromyatnikov, Alexey G.
    Guseynova, Mujgen R.
    Saletsky, Alexander M.
    Klavsyuk, Andrey L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (09):
  • [3] Study on non-equilibrium phase transformation of intracellular water during freezing process
    Zhao Gang
    Liu Zhi-Feng
    Yang Rui
    Cheng Shu-Xia
    ACTA CHIMICA SINICA, 2007, 65 (04) : 295 - 299
  • [4] Non-equilibrium condensation of water vapor in sonic nozzle
    Ding, Hongbing
    Wang, Chao
    Chen, Chao
    APPLIED THERMAL ENGINEERING, 2014, 71 (01) : 324 - 334
  • [5] One-dimensional island size distribution: From non-equilibrium to equilibrium
    Syromyatnikov, Alexey G.
    Saletsky, Alexander M.
    Klaysyuk, Andrey L.
    SURFACE SCIENCE, 2020, 693
  • [6] Effect of non-equilibrium parameters on the numerical modeling of settling basins
    Yeganeh, Maryam Teymouri
    Heidari, Mohammad Mehdi
    Ghobadian, Rasool
    INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2024, 39 (05) : 761 - 773
  • [7] CuS nanoparticles: An efficient electrocatalyst for hydrogen evolution reaction in a wide pH range
    Patel, Meswa
    Joshi, Kinjal K.
    Modi, Krishna H.
    Pataniya, Pratik M.
    Siraj, Sohel
    Sahatiya, Parikshit
    Sumesh, C. K.
    ELECTROCHIMICA ACTA, 2023, 441
  • [8] Modeling non-equilibrium mass transport in biologically reactive porous media
    Davit, Yohan
    Debenest, Gerald
    Wood, Brian D.
    Quintard, Michel
    ADVANCES IN WATER RESOURCES, 2010, 33 (09) : 1075 - 1093
  • [9] Non-equilibrium adatom thermal state enables rapid additive nanomanufacturing
    Henry, Matthew R.
    Kim, Songkil
    Fedorov, Andrei G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (20) : 10449 - 10456
  • [10] Effect of the water erosion on the non-equilibrium condensation in steam turbine cascade
    Liang, Di
    Li, Nailiang
    Zhou, Zhongning
    Li, Yimin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 236