Higher order FEM for the obstacle problem of the p-Laplacian-A variational inequality approach

被引:8
作者
Banz, Lothar [1 ]
Lamichhane, Bishnu P. [2 ]
Stephan, Ernst P. [3 ]
机构
[1] Univ Salzburg, Dept Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
[2] Univ Newcastle, Sch Math & Phys Sci, Univ Dr, Callaghan, NSW 2308, Australia
[3] Leibniz Univ Hannover, Inst Appl Math, Welfengarten 1, D-30167 Hannover, Germany
关键词
p-Laplacian obstacle problem; A priori error estimate; A posteriori error estimate; hq-adaptive FEM; FINITE-ELEMENT-METHOD; ERROR CONTROL; APPROXIMATION; INTERPOLATION; CONVERGENCE; ESTIMATORS;
D O I
10.1016/j.camwa.2018.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider higher order finite element discretizations of a nonlinear variational inequality formulation arising from an obstacle problem with the p-Laplacian differential operator for p is an element of (1, infinity). We prove an a priori error estimate and convergence rates with respect to the mesh size h and in the polynomial degree q under assumed regularity. Moreover, we derive a general a posteriori error estimate which is valid for any uniformly bounded sequence of finite element functions. All our results contain the known results for the linear case of p = 2. We present numerical results on the improved convergence rates of adaptive schemes (mesh size adaptivity with and without polynomial degree adaptation) for the singular case of p = 1.5 and for the degenerated case of p = 3. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1639 / 1660
页数:22
相关论文
共 28 条
[1]   The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs [J].
Ainsworth, M ;
Kay, D .
NUMERISCHE MATHEMATIK, 1999, 82 (03) :351-388
[2]  
[Anonymous], 2013, Partielle Differentialgleichungen
[3]  
Banz L., 2017, PREPRINT
[4]   Higher Order Mixed FEM for the Obstacle Problem of the p-Laplace Equation Using Biorthogonal Systems [J].
Banz, Lothar ;
Lamichhane, Bishnu P. ;
Stephan, Ernst P. .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (02) :169-188
[5]   Biorthogonal basis functions in hp-adaptive FEM for elliptic obstacle problems [J].
Banz, Lothar ;
Schroeder, Andreas .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (08) :1721-1742
[6]   A posteriori error estimates of hp-adaptive IPDG-FEM for elliptic obstacle problems [J].
Banz, Lothar ;
Stephan, Ernst R. .
APPLIED NUMERICAL MATHEMATICS, 2014, 76 :76-92
[7]   QUASI-NORM ERROR-BOUNDS FOR THE FINITE-ELEMENT APPROXIMATION OF A NON-NEWTONIAN FLOW [J].
BARRETT, JW ;
LIU, WB .
NUMERISCHE MATHEMATIK, 1994, 68 (04) :437-456
[8]   Averaging techniques yield reliable a posteriori finite element error control for obstacle problems [J].
Bartels, S ;
Carstensen, C .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :225-249
[9]   POLYNOMIAL INTERPOLATION RESULTS IN SOBOLEV SPACES [J].
BERNARDI, C ;
MADAY, Y .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) :53-80
[10]   A posteriori error estimators for obstacle problems - another look [J].
Braess, D .
NUMERISCHE MATHEMATIK, 2005, 101 (03) :415-421