A new generalization of Fermat's Last Theorem

被引:1
作者
Cai, Tianxin [1 ]
Chen, Deyi [1 ]
Zhang, Yong [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fermat's Last Theorem; Additive and multiplicative functions; Quadratic fields; Elliptic curves; EQUATION;
D O I
10.1016/j.jnt.2014.09.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider some hybrid Diophantine equations of addition and multiplication. We first improve a result on new Hilbert-Waring problem. Then we consider the equation [GRAPHIC] where A, B, C, D, n is an element of Z(+) and n >= 3, which may be regarded as a generalization of Fermat's equation x(n) + y(n) = z(n). When gcd(A, B, C) = 1, (1) is equivalent to Fermat's equation, which means it has no positive integer solutions. We discuss several cases for gcd(A, B, C) = p(k) where p is an odd prime. In particular, for k = 1 we prove that (1) has no nonzero integer solutions when n = 3 and we conjecture that it is also true for any prime n > 3. Finally, we consider Eq. (1) in quadratic fields Q(root t) for n =3. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
[41]   CERTAIN OPERATOR SOLUTIONS TO FERMAT'S TYPE EQUATION ON BERGMAN SPACES [J].
Jena, Pabitra kumar ;
Padhy, Chinmayee ;
Das, S. .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2025, 8 (04) :587-598
[42]   A NOTE ON PETTY'S THEOREM [J].
Marini, Michele ;
De Philippis, Guido .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :586-594
[43]   An extension of Aigner's theorem [J].
Tho, Nguyen Xuan .
MONATSHEFTE FUR MATHEMATIK, 2024, 204 (01) :191-195
[44]   A note on Grayson's theorem [J].
Magni, Annibale ;
Mantegazza, Carlo .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 131 :263-279
[45]   A GENERALIZATION OF SZEBEHELY'S INVERSE PROBLEM OF DYNAMICS [J].
Sarlet, W. ;
Mestdag, T. ;
Prince, G. .
REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (01) :65-84
[47]   A Complete Generalization of Atkin's Square Root Algorithm [J].
Rotaru, Armand Stefan ;
Iftene, Sorin .
FUNDAMENTA INFORMATICAE, 2013, 125 (01) :71-94
[48]   An Extension of Darbo's Theorem and Its Application [J].
Samadi, A. ;
Ghaemi, M. B. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[49]   Diophantine applications of Bennett's abc theorem [J].
Walsh, PG .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2004, 65 (3-4) :497-512
[50]   On the effective version of Serre's open image theorem [J].
Mayle, Jacob ;
Wang, Tian .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (04) :1399-1416