Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

被引:73
作者
Fitzpatrick, David A. [1 ,2 ]
O'Gaora, Peadar [3 ]
Byrne, Kevin P. [4 ]
Butler, Geraldine [1 ]
机构
[1] Univ Coll Dublin, Conway Inst, UCD Sch Biomol & Biomed Sci, Dublin 4, Ireland
[2] Natl Univ Ireland, Dept Biol, Maynooth, Kildare, Ireland
[3] Univ Coll Dublin, Conway Inst, UCD Sch Med & Med Sci, Dublin 4, Ireland
[4] Univ Dublin Trinity Coll, Smurfit Inst Genet, Dublin 2, Ireland
来源
BMC GENOMICS | 2010年 / 11卷
基金
爱尔兰科学基金会;
关键词
SACCHAROMYCES-CEREVISIAE; PHYLOGENETIC ANALYSIS; GENOME SEQUENCE; INTRON LOSS; YEAST; ALBICANS; IDENTIFICATION; DUPLICATION; ANNOTATION; VIRULENCE;
D O I
10.1186/1471-2164-11-290
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome. Results: CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C.albicans. Conclusions: Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http://cgob.ucd.ie.
引用
收藏
页数:14
相关论文
共 65 条
  • [1] The Hyphal-Associated Adhesin and Invasin Als3 of Candida albicans Mediates Iron Acquisition from Host Ferritin
    Almeida, Ricardo S.
    Brunke, Sascha
    Albrecht, Antje
    Thewes, Sascha
    Laue, Michael
    Edwards, John E., Jr.
    Filler, Scott G.
    Hube, Bernhard
    [J]. PLOS PATHOGENS, 2008, 4 (11)
  • [2] Sequence resources at the Candida genome database
    Arnaud, Martha B.
    Costanzo, Maria C.
    Skrzypek, Marek S.
    Shah, Prachi
    Binkley, Gail
    Lane, Christopher
    Miyasato, Stuart R.
    Sherlock, Gavin
    [J]. NUCLEIC ACIDS RESEARCH, 2007, 35 : D452 - D456
  • [3] The Candida albicans HYR1 gene, which is activated in response to hyphal development: Belongs to a gene family encoding yeast cell wall proteins
    Bailey, DA
    Feldmann, PJF
    Bovey, M
    Gow, NAR
    Brown, AJP
    [J]. JOURNAL OF BACTERIOLOGY, 1996, 178 (18) : 5353 - 5360
  • [4] Blumenthal T, 1998, BIOESSAYS, V20, P480, DOI 10.1002/(SICI)1521-1878(199806)20:6<480::AID-BIES6>3.0.CO
  • [5] 2-Q
  • [6] A global analysis of Caenorhabditis elegans operons
    Blumenthal, T
    Evans, D
    Link, CD
    Guffanti, A
    Lawson, D
    Thierry-Mieg, J
    Thierry-Mieg, D
    Chiu, WL
    Duke, K
    Kiraly, M
    Kim, SK
    [J]. NATURE, 2002, 417 (6891) : 851 - 854
  • [7] Molecular evolution of eukaryotic genomes:: hemiascomycetous yeast spliceosomal introns
    Bon, E
    Casaregola, S
    Blandin, G
    Llorente, B
    Neuvéglise, C
    Munsterkotter, M
    Guldener, U
    Mewes, HW
    Van Helden, J
    Dujon, B
    Gaillardin, C
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (04) : 1121 - 1135
  • [8] A human-curated annotation of the Candida albicans genome
    Braun, BR
    Hoog, MV
    d'Enfert, C
    Martchenko, M
    Dungan, J
    Kuo, A
    Inglis, DO
    Uhl, MA
    Hogues, H
    Berriman, M
    Lorenz, M
    Levitin, A
    Oberholzer, U
    Bachewich, C
    Harcus, D
    Marcil, A
    Dignard, D
    Iouk, T
    Zito, R
    Frangeul, L
    Tekaia, F
    Rutherford, K
    Wang, E
    Munro, CA
    Bates, S
    Gow, NA
    Hoyer, LL
    Köhler, G
    Morschhäuser, J
    Newport, G
    Znaidi, S
    Raymond, M
    Turcotte, B
    Sherlock, G
    Costanzo, M
    Ihmels, J
    Berman, J
    Sanglard, D
    Agabian, N
    Mitchell, AP
    Johnson, AD
    Whiteway, M
    Nantel, A
    [J]. PLOS GENETICS, 2005, 1 (01): : 36 - 57
  • [9] Evolution of pathogenicity and sexual reproduction in eight Candida genomes
    Butler, Geraldine
    Rasmussen, Matthew D.
    Lin, Michael F.
    Santos, Manuel A. S.
    Sakthikumar, Sharadha
    Munro, Carol A.
    Rheinbay, Esther
    Grabherr, Manfred
    Forche, Anja
    Reedy, Jennifer L.
    Agrafioti, Ino
    Arnaud, Martha B.
    Bates, Steven
    Brown, Alistair J. P.
    Brunke, Sascha
    Costanzo, Maria C.
    Fitzpatrick, David A.
    de Groot, Piet W. J.
    Harris, David
    Hoyer, Lois L.
    Hube, Bernhard
    Klis, Frans M.
    Kodira, Chinnappa
    Lennard, Nicola
    Logue, Mary E.
    Martin, Ronny
    Neiman, Aaron M.
    Nikolaou, Elissavet
    Quail, Michael A.
    Quinn, Janet
    Santos, Maria C.
    Schmitzberger, Florian F.
    Sherlock, Gavin
    Shah, Prachi
    Silverstein, Kevin A. T.
    Skrzypek, Marek S.
    Soll, David
    Staggs, Rodney
    Stansfield, Ian
    Stumpf, Michael P. H.
    Sudbery, Peter E.
    Srikantha, Thyagarajan
    Zeng, Qiandong
    Berman, Judith
    Berriman, Matthew
    Heitman, Joseph
    Gow, Neil A. R.
    Lorenz, Michael C.
    Birren, Bruce W.
    Kellis, Manolis
    [J]. NATURE, 2009, 459 (7247) : 657 - 662
  • [10] Visualizing syntenic relationships among the hemiascomycetes with the Yeast Gene Order Browser
    Byrne, Kevin P.
    Wolfe, Kenneth H.
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 : D452 - D455