Deep Learning-Based Histopathologic Assessment of Kidney Tissue

被引:233
作者
Hermsen, Meyke [1 ]
de Bel, Thomas [1 ]
den Boer, Marjolijn [1 ]
Steenbergen, Eric J. [1 ]
Kers, Jesper [3 ,4 ,5 ]
Florquin, Sandrine [3 ]
Roelofs, Joris J. T. H. [3 ]
Stegall, Mark D. [6 ,9 ]
Alexander, Mariam P. [7 ,9 ]
Smith, Byron H. [8 ,9 ]
Smeets, Bart [1 ]
Hilbrands, Luuk B. [2 ]
van der Laak, Jeroen A. W. M. [1 ,10 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Dept Nephrol, Nijmegen, Netherlands
[3] Univ Amsterdam, Amsterdam Cardiovasc Sci, Amsterdam UMC, Dept Pathol,Amsterdam Infect & Immun, Amsterdam, Netherlands
[4] Univ Amsterdam, Vant Hoff Inst Mol Sci, Ctr Analyt Sci Amsterdam, Amsterdam, Netherlands
[5] Ragon Inst Massachusetts Gen Hosp Massachusetts I, Cambridge, MA USA
[6] Mayo Clin, Div Transplantat Surg, Rochester, MN USA
[7] Mayo Clin, Div Pathol, Rochester, MN USA
[8] Mayo Clin, Div Biomed Stat & Informat, Rochester, MN USA
[9] Mayo Clin, William J von Liebig Ctr Transplantat & Clin Rege, Rochester, MN USA
[10] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2019年 / 30卷 / 10期
关键词
RENAL-ALLOGRAFT BIOPSIES; IMAGE-ANALYSIS; CLASSIFICATION;
D O I
10.1681/ASN.2019020144
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background The development of deep neural networks is facilitating more advanced digital analysis of histopathologic images. We trained a convolutional neural network for multiclass segmentation of digitized kidney tissue sections stained with periodic acid-Schiff (PAS). Methods We trained the network using multiclass annotations from 40 whole-slide images of stained kidney transplant biopsies and applied it to four independent data sets. We assessed multiclass segmentation performance by calculating Dice coefficients for ten tissue classes on ten transplant biopsies from the Radboud University Medical Center in Nijmegen, The Netherlands, and on ten transplant biopsies from an external center for validation. We also fully segmented 15 nephrectomy samples and calculated the network's glomerular detection rates and compared network-based measures with visually scored histologic components (Banff classification) in 82 kidney transplant biopsies. Results The weighted mean Dice coefficients of all classes were 0.80 and 0.84 in ten kidney transplant biopsies from the Radboud center and the external center, respectively. The best segmented class was "glomeruli" in both data sets (Dice coefficients, 0.95 and 0.94, respectively), followed by "tubuli combined" and "interstitium." The network detected 92.7% of all glomeruli in nephrectomy samples, with 10.4% false positives. In whole transplant biopsies, the mean intraclass correlation coefficient for glomerular counting performed by pathologists versus the network was 0.94. We found significant correlations between visually scored histologic components and network-based measures. Conclusions This study presents the first convolutional neural network for multiclass segmentation of PAS-stained nephrectomy samples and transplant biopsies. Our network may have utility for quantitative studies involving kidney histopathology across centers and provide opportunities for deep learning applications in routine diagnostics.
引用
收藏
页码:1968 / 1979
页数:12
相关论文
共 22 条
[1]   Digital Pathology Evaluation in the Multicenter Nephrotic Syndrome Study Network (NEPTUNE) [J].
Barisoni, Laura ;
Nast, Cynthia C. ;
Jennette, J. Charles ;
Hodgin, Jeffrey B. ;
Herzenberg, Andrew M. ;
Lemley, Kevin V. ;
Conway, Catherine M. ;
Kopp, Jeffrey B. ;
Kretzler, Matthias ;
Lienczewski, Christa ;
Avila-Casado, Carmen ;
Bagnasco, Serena ;
Sethi, Sanjeev ;
Tomaszewski, John ;
Gasim, Adil H. ;
Hewitt, Stephen M. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2013, 8 (08) :1449-1459
[2]   Region-Based Convolutional Neural Nets for Localization of Glomeruli in Trichrome-Stained Whole Kidney Sections [J].
Bukowy, John D. ;
Dayton, Alex ;
Cloutier, Dustin ;
Manis, Anna D. ;
Staruschenko, Alexander ;
Lombard, Julian H. ;
Woods, Leah C. Solberg ;
Beard, Daniel A. ;
Cowley, Allen W., Jr. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2018, 29 (08) :2081-2088
[3]   The Substantial Loss of Nephrons in Healthy Human Kidneys with Aging [J].
Denic, Aleksandar ;
Lieske, John C. ;
Chakkera, Harini A. ;
Poggio, Emilio D. ;
Alexander, Mariam P. ;
Singh, Prince ;
Kremers, Walter K. ;
Lerman, Lilach O. ;
Rule, Andrew D. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2017, 28 (01) :313-320
[4]   CNN cascades for segmenting sparse objects in gigapixel whole slide images [J].
Gadermayr, Michael ;
Dombrowski, Ann-Kathrin ;
Klinkhammer, Barbara Mara ;
Boor, Peter ;
Merhof, Dorit .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 71 :40-48
[5]   Do We Need Large Annotated Training Data for Detection Applications in Biomedical Imaging? A Case Study in Renal Glomeruli Detection [J].
Gadermayr, Michael ;
Klinkhammer, Barbara Mara ;
Boor, Peter ;
Merhof, Dorit .
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016, 2016, 10019 :18-26
[6]  
Ginley BG, 2018, MED IMAGING DIGITAL, V10581
[7]  
Ginley B, 2017, J MED IMAGING, V4, DOI 10.1117/1.JMI.4.2.021102
[8]   Computerized image analysis of sirius red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function [J].
Grimm, PC ;
Nickerson, P ;
Gough, J ;
McKenna, R ;
Stern, E ;
Jeffery, J ;
Rush, DN .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (06) :1662-1668
[9]   Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image [J].
Kato, Tsuyoshi ;
Relator, Raissa ;
Ngouv, Hayliang ;
Hirohashi, Yoshihiro ;
Takaki, Osamu ;
Kakimoto, Tetsuhiro ;
Okada, Kinya .
BMC BIOINFORMATICS, 2015, 16
[10]  
Kingma DP, 2015, 3 INT C LEARN REPR S