A Novel Ridge Detector for Nonstationary Multicomponent Signals: Development and Application to Robust Mode Retrieval

被引:20
作者
Laurent, Nils [1 ]
Meignen, Sylvain [1 ]
机构
[1] Univ Grenoble, Domaine Univ, F-38401 St Martin Dheres, France
关键词
Time-frequency analysis; Continuous wavelet transforms; Chirp; Noise measurement; Noise level; Indexes; Fourier transforms; AM; FM multicomponent signals; short-time fourier transform; ridge detection; mode retrieval; TIME-FREQUENCY; INSTANTANEOUS FREQUENCY; DECOMPOSITION; DEMODULATION; TRANSFORM; ALGORITHM;
D O I
10.1109/TSP.2021.3085113
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Time-frequency analysis is often used to study non stationary multicomponent signals, which can be viewed as the surperposition of modes. To understand such signals, it is essential to identify the ridges associated with the modes in the time-frequency plane. As existing ridge detectors are often not enough robust to noise, we here develop a novel approach to ridge detection based on the gathering of ridge portions in the time-frequency plane, which we coin RRP-RD. Such a technique is proved to be much more robust to noise than state-of-the-art methods based on the same framework, and we also demonstrate its benefits for mode retrieval.
引用
收藏
页码:3325 / 3336
页数:12
相关论文
共 36 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   IMPROVING THE READABILITY OF TIME-FREQUENCY AND TIME-SCALE REPRESENTATIONS BY THE REASSIGNMENT METHOD [J].
AUGER, F ;
FLANDRIN, P .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (05) :1068-1089
[3]   Measuring time-frequency information content using the Renyi entropies [J].
Baraniuk, RG ;
Flandrin, P ;
Janssen, AJEM ;
Michel, OJJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) :1391-1409
[4]   Theoretical analysis of the second-order synchrosqueezing transform [J].
Behera, Ratikanta ;
Meignen, Sylvain ;
Oberlin, Thomas .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, 45 (02) :379-404
[5]  
Boashash B, 2003, TIME FREQUENCY SIGNAL ANALYSIS AND PROCESSING: A COMPREHENSIVE REFERENCE, P627
[6]   Multiridge detection and time-frequency reconstruction [J].
Carmona, RA ;
Hwang, WL ;
Torrésani, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (02) :480-492
[7]   Characterization of signals by the ridges of their wavelet transforms [J].
Carmona, RA ;
Hwang, WL ;
Torresani, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (10) :2586-2590
[8]   Intrinsic chirp component decomposition by using Fourier Series representation [J].
Chen, Shiqian ;
Peng, Zhike ;
Yang, Yang ;
Dong, Xingjian ;
Zhang, Wenming .
SIGNAL PROCESSING, 2017, 137 :319-327
[9]   Analysis of an adaptive short-time Fourier transform-based multicomponent signal separation method derived from linear chirp local approximation [J].
Chui, Charles K. ;
Jiang, Qingtang ;
Li, Lin ;
Lu, Jian .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 396
[10]   Signal decomposition and analysis via extraction of frequencies [J].
Chui, Charles K. ;
Mhaskar, H. N. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2016, 40 (01) :97-136