Chiral spin-phonon bound states and spin-spin interactions with phononic lattices

被引:10
作者
Dong, Xing-Liang [1 ]
Shen, Cai-Peng [1 ]
Gao, Shao-Yan [1 ]
Li, Hong-Rong [1 ]
Gao, Hong [1 ]
Li, Fu-Li [1 ]
Li, Peng-Bo [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Shaanxi Prov Key Lab Quantum Informat & Quantum O, Minist Educ,Key Lab Nonequilibrium Synth & Modula, Xian 710049, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
ATOM-ATOM INTERACTIONS; QUANTUM NANOPHOTONICS; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; COHERENCE TIME; DYNAMICS; QUTIP; QUBIT;
D O I
10.1103/PhysRevResearch.4.023077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Designing unconventional interactions between single phonons and spins is fascinating for its applications in quantum phononics. Here we propose a reliable scheme for coupling spins and phonons in phononic dimer and trimer lattices, with the combination of solid-state defects and diamond phononic (optomechanical) crystals. The dimer and trimer lattices used are an array of coupled phononic cavities with spatially modulated hopping rates. We predict a series of unconventional sound-matter interaction phenomena in this hybrid quantum system. In the dimer lattice we show the formation of chiral spin-phonon bound states and topology-dependent phononic collective radiation. While in the trimer lattice, chiral bound states still exist and the spin relaxation is sublattice dependent. The chiral bound states existing in both types of lattices are robust to a large amount of disorder, which can mediate chiral and robust spin-spin interactions. This work provides a promising platform for phonon-based quantum information processing and quantum simulation.
引用
收藏
页数:13
相关论文
共 88 条
[1]  
Asboth J. K., 2016, Lect. Notes Phys.
[2]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[3]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4
[4]  
Barfuss A, 2015, NAT PHYS, V11, P820, DOI [10.1038/NPHYS3411, 10.1038/nphys3411]
[5]   A topological quantum optics interface [J].
Barik, Sabyasachi ;
Karasahin, Aziz ;
Flower, Christopher ;
Cai, Tao ;
Miyake, Hirokazu ;
DeGottardi, Wade ;
Hafezi, Mohammad ;
Waks, Edo .
SCIENCE, 2018, 359 (6376) :666-668
[6]   Spin Many-Body Phases in Standard- and Topological-Waveguide QED Simulators [J].
Bello, M. ;
Platero, G. ;
Gonzalez-Tudela, A. .
PRX QUANTUM, 2022, 3 (01)
[7]   Unconventional quantum optics in topological waveguide QED [J].
Bello, M. ;
Platero, G. ;
Cirac, J. I. ;
Gonzalez-Tudela, A. .
SCIENCE ADVANCES, 2019, 5 (07)
[8]   Phonon-Induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin Squeezing [J].
Bennett, S. D. ;
Yao, N. Y. ;
Otterbach, J. ;
Zoller, P. ;
Rabl, P. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2013, 110 (15)
[9]  
Bhaskar M. K., Phys. Rev. Lett.
[10]   Phonon-mediated quantum state transfer and remote qubit entanglement [J].
Bienfait, A. ;
Satzinger, K. J. ;
Zhong, Y. P. ;
Chang, H. -S. ;
Chou, M. -H. ;
Conner, C. R. ;
Dumur, E. ;
Grebel, J. ;
Peairs, G. A. ;
Povey, R. G. ;
Cleland, A. N. .
SCIENCE, 2019, 364 (6438) :368-+