Deformation behavior of magnesium in the grain size spectrum from nano- to micrometer

被引:110
作者
Choi, H. J. [1 ]
Kim, Y. [1 ]
Shin, J. H. [1 ]
Bae, D. H. [1 ]
机构
[1] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2010年 / 527卷 / 06期
关键词
Nanocrystalline metals; Deformation behavior; Magnesium; Twin; Grain boundary sliding; MOLECULAR-DYNAMICS SIMULATION; NANOCRYSTALLINE METALS; RATE SENSITIVITY; ALLOYS; TEMPERATURE; POWDER; CREEP;
D O I
10.1016/j.msea.2009.10.035
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study investigates the deformation behavior of magnesium produced by hot extrusion of ball-milled powders in grains ranging from 120 mu m down to 60 nm in size. For microcrystalline magnesium, lattice dislocation interactions with grain boundaries and/or twin boundaries provide a Hall-Petch relationship between the flow stress and the grain size. The Hall-Petch slope is negatively deviated as the grain size is reduced below 1 mu m since twinning offers an additional deformation mode. As the grain size is further reduced below 100 nm, twinning is significantly suppressed and a portion of grain boundary sliding for plastic deformation increases, providing an inverse Hall-Petch relationship. Microstructure observation, a negligible strain hardening rate, a relatively high index of strain rate sensitivity. and a low activation volume in compression tests also demonstrate the particular deformation behavior of nanocrystalline magnesium. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1565 / 1570
页数:6
相关论文
共 33 条
[1]   Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J].
Asaro, RJ ;
Suresh, S .
ACTA MATERIALIA, 2005, 53 (12) :3369-3382
[2]  
Ashby M.F., 1982, DEFORMATION MECH MAP
[3]   Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn [J].
Barnett, MR ;
Keshavarz, Z ;
Beer, AG ;
Atwell, D .
ACTA MATERIALIA, 2004, 52 (17) :5093-5103
[4]   Low temperature creep of nanocrystalline pure copper [J].
Cai, B ;
Kong, QP ;
Lu, L ;
Lu, K .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 286 (01) :188-192
[5]   GLASSLIKE BEHAVIOR IN A NANOSTRUCTURED FE/CU ALLOY [J].
CARSLEY, JE ;
MILLIGAN, WW ;
HACKNEY, SA ;
AIFANTIS, EC .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1995, 26 (09) :2479-2481
[6]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918
[7]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277
[8]   On the grain size softening in nanocrystalline materials [J].
Conrad, H ;
Narayan, J .
SCRIPTA MATERIALIA, 2000, 42 (11) :1025-1030
[9]   Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling [J].
del Valle, J. A. ;
Carreno, F. ;
Ruano, O. A. .
ACTA MATERIALIA, 2006, 54 (16) :4247-4259
[10]   "Hysteresis" in interaction of nanocrystalline magnesium with hydrogen [J].
Gerasimov, K. B. ;
Konstanchuck, I. G. ;
Chizhik, S. A. ;
Bobet, J. -L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (04) :1916-1921