'Units of meaning' in medical documents Natural language processing perspective

被引:1
作者
Popolov, Dimitri [1 ]
Barr, Joseph R. [2 ]
机构
[1] DataSkill Inc, San Diego, CA 92123 USA
[2] San Diego State Univ, Data Skill Inc, San Diego, CA USA
来源
2014 IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC) | 2014年
关键词
natural language processing; NLP; text-based communications;
D O I
10.1109/ICSC.2014.62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discusses principles for the design of natural language processing (NLP) systems to automatically extract of data from doctor's notes, laboratory results and other medical documents in free-form text. We argue that rather than searching for 'atom units of meaning' in the text and then trying to generalize them into a broader set of documents through increasingly complicated system of rules, an NLP practitioner should take concepts as a whole as a meaningful unit of text. This simplifies the rules and makes NLP system easier to maintain and adapt. The departure point is purely practical; however a deeper investigation of typical problems with the implementation of such systems leads us to a discussion of broader theoretical principles underlying the NLP practices.
引用
收藏
页码:320 / 323
页数:4
相关论文
共 50 条
  • [1] Units of Meaning in Medical Documents: A Natural Language Processing Perspective
    Barr, Joseph R.
    Popolov, Dimitri
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2014, 8 (03) : 249 - 255
  • [2] Natural language processing to extract medical problems from electronic clinical documents: Performance evaluation
    Meystre, Stephane
    Haug, Peter J.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2006, 39 (06) : 589 - 599
  • [3] Natural language processing: a prolog perspective
    Christian Bitter
    David A. Elizondo
    Yingjie Yang
    Artificial Intelligence Review, 2010, 33 : 151 - 173
  • [4] GarNLP: A Natural Language Processing Pipeline for Garnishment Documents
    Ilaria Bordino
    Andrea Ferretti
    Francesco Gullo
    Stefano Pascolutti
    Information Systems Frontiers, 2021, 23 : 101 - 114
  • [5] GarNLP: A Natural Language Processing Pipeline for Garnishment Documents
    Bordino, Ilaria
    Ferretti, Andrea
    Gullo, Francesco
    Pascolutti, Stefano
    INFORMATION SYSTEMS FRONTIERS, 2021, 23 (01) : 101 - 114
  • [6] A Natural Language Processing Survey on Legislative and Greek Documents
    Krasadakis, Panteleimon
    Sakkopoulos, Evangelos
    Verykios, Vassilios S.
    25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 407 - 412
  • [7] Natural language processing: a prolog perspective
    Bitter, Christian
    Elizondo, David A.
    Yang, Yingjie
    ARTIFICIAL INTELLIGENCE REVIEW, 2010, 33 (1-2) : 151 - 173
  • [8] Designing a Uniform Meaning Representation for Natural Language Processing
    Jens E. L. Van Gysel
    Meagan Vigus
    Jayeol Chun
    Kenneth Lai
    Sarah Moeller
    Jiarui Yao
    Tim O’Gorman
    Andrew Cowell
    William Croft
    Chu-Ren Huang
    Jan Hajič
    James H. Martin
    Stephan Oepen
    Martha Palmer
    James Pustejovsky
    Rosa Vallejos
    Nianwen Xue
    KI - Künstliche Intelligenz, 2021, 35 : 343 - 360
  • [9] Designing a Uniform Meaning Representation for Natural Language Processing
    Van Gysel, Jens E. L.
    Vigus, Meagan
    Chun, Jayeol
    Lai, Kenneth
    Moeller, Sarah
    Yao, Jiarui
    O'Gorman, Tim
    Cowell, Andrew
    Croft, William
    Huang, Chu-Ren
    Hajic, Jan
    Martin, James H.
    Oepen, Stephan
    Palmer, Martha
    Pustejovsky, James
    Vallejos, Rosa
    Xue, Nianwen
    KUNSTLICHE INTELLIGENZ, 2021, 35 (3-4): : 343 - 360
  • [10] Understanding Financial Transaction Documents using Natural Language Processing
    Jain, Prateek
    Verma, Kunal
    Gaikwad, Aniket
    Gadde, Pramod
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE (K-CAP '19), 2019, : 255 - 258