A finiteness theorem for holomorphic Banach bundles

被引:0
|
作者
Leiterer, Juergen [1 ]
机构
[1] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a holomorphic Banach bundle over a compact complex manifold, which can be defined by a cocycle of holomorphic transition functions with values of the form id+K where K is compact. Assume that the characteristic fiber of E has the compact approximation property. Let n be the complex dimension of X and 0 <= q <= n. Then: If V -> X is a holomorphic vector bundle (of finite rank) with H-q (X, V)=0, then dim H-q (X, V circle times E)<infinity. In particular, if dim H-q (X, O)=0, then dim H-q (X, E)<infinity.
引用
收藏
页码:15 / 37
页数:23
相关论文
共 50 条