Application of the Ensemble Kalman Smoother to Turbulent Transport Analysis in LHD Plasma

被引:2
|
作者
Morishita, Yuya [1 ]
Murakami, Sadayoshi [1 ]
Yokoyama, Masayuki [2 ,4 ,5 ]
Ueno, Genta [3 ,4 ,5 ,6 ]
机构
[1] Kyoto Univ, Dept Nucl Engn, Kyoto 6158540, Japan
[2] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[3] Inst Stat Math, Tokyo 1908562, Japan
[4] Grad Univ Adv Studies, SOKENDAI, Toki, Gifu 5095292, Japan
[5] Grad Univ Adv Studies, SOKENDAI, Tokyo 1908562, Japan
[6] Joint Support Ctr Data Sci Res, Tokyo 1900014, Japan
来源
关键词
data assimilation; ASTI; ensemble Kalman smoother; TASK3D; LHD;
D O I
10.1585/pfr.16.2403016
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ensemble Kalman smoother (EnKS) is introduced to the data assimilation system, ASTI, based on the integrated transport simulation code, TASK3D. We use the EnKS to estimate state variables composed of electron and ion temperature, density, and numerical factors of turbulent transport models and neutral beam injection (NBI) heat deposition. The time series data of plasma temperature and density profiles are assimilated into TASK3D. The estimation performance of the EnKS is investigated, and the EnKS is applied to an NBI plasma in the Large Helical Device (LHD) (shot:114053) to estimate the factors of the turbulent heat transport model. The obtained factors can reproduce the experimental temperature data with high accuracy. These results indicate the effectiveness and validity of the EnKS approach for accurate estimation of fusion plasma parameters. (C) 2021 The Japan Society of Plasma Science and Nuclear Fusion Research
引用
收藏
页码:2403016 / 1
页数:8
相关论文
共 50 条
  • [1] Application of the Ensemble Kalman Smoother to Turbulent Transport Analysis in LHD Plasma
    Department of Nuclear Engineering, Kyoto University, Kyoto
    615-8540, Japan
    不详
    509-5292, Japan
    不详
    190-8562, Japan
    不详
    Tokyo
    509-5292, 190-8562, Japan
    不详
    190-0014, Japan
    Plasma Fusion Res., 1600, (2403016-1-2403016-8):
  • [2] Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
    Dong, Bo
    Bannister, Ross
    Chen, Yumeng
    Fowler, Alison
    Haines, Keith
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (14) : 4233 - 4247
  • [3] A LOCALIZED ENSEMBLE KALMAN SMOOTHER
    Butala, Mark D.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 21 - 24
  • [4] An ensemble Kalman smoother for reanalysis
    Whitaker, JS
    Compo, GP
    SYMPOSIUM ON OBSERVATIONS, DATA ASSIMILATION, AND PROBABILISTIC PREDICTION, 2002, : 144 - 147
  • [5] An iterative ensemble Kalman smoother
    Bocquet, M.
    Sakov, P.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (682) : 1521 - 1535
  • [6] Localization and the iterative ensemble Kalman smoother
    Bocquet, M.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (695) : 1075 - 1089
  • [7] An ensemble Kalman smoother for nonlinear dynamics
    Evensen, G
    van Leeuwen, PJ
    MONTHLY WEATHER REVIEW, 2000, 128 (06) : 1852 - 1867
  • [9] An investigation into the application of an ensemble Kalman smoother to high-dimensional geophysical systems
    Khare, Shree P.
    Anderson, Jeffrey L.
    Hoar, Timothy J.
    Nychka, Douglas
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2008, 60 (01) : 97 - 112
  • [10] Ensemble Transform Kalman Incremental Smoother and Its Application to Data Assimilation and Prediction
    Lin, Zhe-Hui
    Yang, Shu-Chih
    Kalnay, Eugenia
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 7