Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification

被引:410
作者
Chang, Julie [1 ]
Sitzmann, Vincent [2 ]
Dun, Xiong [3 ]
Heidrich, Wolfgang [3 ]
Wetzstein, Gordon [2 ]
机构
[1] Stanford Univ, Bioengn Dept, Stanford, CA 94305 USA
[2] Stanford Univ, Elect Engn Dept, Stanford, CA 94305 USA
[3] King Abdullah Univ Sci & Technol, Visual Comp Ctr, Thuwal 23955, Saudi Arabia
基金
美国国家科学基金会;
关键词
IMPLEMENTATION; RECOGNITION;
D O I
10.1038/s41598-018-30619-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Convolutional neural networks (CNNs) excel in a wide variety of computer vision applications, but their high performance also comes at a high computational cost. Despite efforts to increase efficiency both algorithmically and with specialized hardware, it remains difficult to deploy CNNs in embedded systems due to tight power budgets. Here we explore a complementary strategy that incorporates a layer of optical computing prior to electronic computing, improving performance on image classification tasks while adding minimal electronic computational cost or processing time. We propose a design for an optical convolutional layer based on an optimized diffractive optical element and test our design in two simulations: a learned optical correlator and an optoelectronic two-layer CNN. We demonstrate in simulation and with an optical prototype that the classification accuracies of our optical systems rival those of the analogous electronic implementations, while providing substantial savings on computational cost.
引用
收藏
页数:10
相关论文
共 40 条
[1]  
[Anonymous], 2007, Hyperspectral data exploitation: theory and applications
[2]   Reinforcement learning in a large-scale photonic recurrent neural network [J].
Bueno, J. ;
Maktoobi, S. ;
Froehly, L. ;
Fischer, I. ;
Jacquot, M. ;
Larger, L. ;
Brunner, D. .
OPTICA, 2018, 5 (06) :756-760
[3]   Variable Aperture Light Field Photography: Overcoming the Diffraction-limited Spatio-angular Resolution Tradeoff [J].
Chang, Julie ;
Kauvar, Isaac ;
Hu, Xuemei ;
Wetzstein, Gordon .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3737-3745
[4]   ASP Vision: Optically Computing the First Layer of Convolutional Neural Networks using Angle Sensitive Pixels [J].
Chen, Huaijin G. ;
Jayasuriya, Suren ;
Yang, Jiyue ;
Stephen, Judy ;
Sivaramakrishnan, Sriram ;
Veeraraghavan, Ashok ;
Molnar, Alyosha .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :903-912
[5]   A broadband achromatic metalens for focusing and imaging in the visible [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Sanjeev, Vyshakh ;
Khorasaninejad, Mohammadreza ;
Shi, Zhujun ;
Lee, Eric ;
Capasso, Federico .
NATURE NANOTECHNOLOGY, 2018, 13 (03) :220-+
[6]  
Dally WJ, 2015, ARXIV151000149, V2
[7]  
Denz C., 2013, Optical Neural Networks
[8]   OPTICAL IMPLEMENTATION OF THE HOPFIELD MODEL [J].
FARHAT, NH ;
PSALTIS, D ;
PRATA, A ;
PAEK, E .
APPLIED OPTICS, 1985, 24 (10) :1469-1475
[9]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[10]  
Goodman Joseph W., 2005, Introduction to Fourier optics