Rankin-Cohen operators for Jacobi and Siegel forms

被引:31
作者
Choie, Y
Eholzer, W
机构
[1] Pohang Inst Sci & Technol, Dept Math, Pohang 790784, South Korea
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jnth.1997.2203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Far any non-negative integer nu we construct esplicitly [nu/2] + 1 independent covariant bilinear differential operators from J(k,m)xJ(k',m') to J(k+k'+nu,m+m'). As an application we construct a covariant bilinear differential operator mapping S-k((2))xS(k')((2)) to S-k+k'+c((2)). Here J(k,m) denotes the space of Jacobi forms of weight k and index m and S-k((2)) the space of Siegel modular forms of degree 2 and weight k. The covariant bilinear differential operators constructed are analogous to operators already studied in the elliptic case by R. Rankin and H. Cohen and we call them Rankin-Cohen operators. (C) 1998 Academic Press.
引用
收藏
页码:160 / 177
页数:18
相关论文
共 11 条