Equilibration Time Scales of Physically Relevant Observables

被引:56
|
作者
Garcia-Pintos, Luis Pedro [1 ,2 ]
Linden, Noah [1 ]
Malabarba, Artur S. L. [3 ]
Short, Anthony J. [3 ]
Winter, Andreas [4 ,5 ]
机构
[1] Univ Bristol, Sch Math, Univ Walk, Bristol BS8 1TW, Avon, England
[2] Chapman Univ, Inst Quantum Studies, 1 Univ Dr, Orange, CA 92866 USA
[3] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England
[4] Univ Autonoma Barcelona, ICREA, ES-08193 Bellaterra, Barcelona, Spain
[5] Univ Autonoma Barcelona, Fis Teor Informacio & Fenomens Quant, ES-08193 Bellaterra, Barcelona, Spain
来源
PHYSICAL REVIEW X | 2017年 / 7卷 / 03期
关键词
QUANTUM; THERMALIZATION; PROPAGATION; SYSTEMS;
D O I
10.1103/PhysRevX.7.031027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the problem of understanding, from first principles, the conditions under which a quantum system equilibrates rapidly with respect to a concrete observable. On the one hand, previously known general upper bounds on the time scales of equilibration were unrealistically long, with times scaling linearly with the dimension of the Hilbert space. These bounds proved to be tight since particular constructions of observables scaling in this way were found. On the other hand, the computed equilibration time scales for certain classes of typical measurements, or under the evolution of typical Hamiltonians, are unrealistically short. However, most physically relevant situations fall outside these two classes. In this paper, we provide a new upper bound on the equilibration time scales which, under some physically reasonable conditions, give much more realistic results than previously known. In particular, we apply this result to the paradigmatic case of a system interacting with a thermal bath, where we obtain an upper bound for the equilibration time scale independent of the size of the bath. In this way, we find general conditions that single out observables with realistic equilibration times within a physically relevant setup.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Comment on "Equilibration Time Scales of Physically Relevant Observables"
    Heveling, Robin
    Knipschild, Lars
    Gemmer, Jochen
    PHYSICAL REVIEW X, 2020, 10 (02)
  • [2] Poleward energy transport: is the standard definition physically relevant at all time scales?
    Liang, Minyi
    Czaja, Arnaud
    Graversen, Rune
    Tailleux, Remi
    CLIMATE DYNAMICS, 2018, 50 (5-6) : 1785 - 1797
  • [3] Poleward energy transport: is the standard definition physically relevant at all time scales?
    Minyi Liang
    Arnaud Czaja
    Rune Graversen
    Remi Tailleux
    Climate Dynamics, 2018, 50 : 1785 - 1797
  • [4] On transport phenomena and equilibration time scales in thermodenuders
    Saleh, R.
    Shihadeh, A.
    Khlystov, A.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (03) : 571 - 581
  • [5] Time Scales of Southern Ocean Eddy Equilibration
    Sinha, Anirban
    Abernathey, Ryan P.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2016, 46 (09) : 2785 - 2805
  • [6] Separation of equilibration time scales in the gradient expansion
    Garbrecht, Bjoern
    Konstandin, Thomas
    PHYSICAL REVIEW D, 2009, 79 (08):
  • [7] Atomistic Modeling of Quantum Dots at Experimentally Relevant Scales Using Charge Equilibration
    Weeks, Nathan
    Tvrdy, Kevin
    JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (48): : 9346 - 9357
  • [8] Estimation of equilibration time scales from nested fraction approximations
    Bartsch, Christian
    Dymarsky, Anatoly
    Lamann, Mats H.
    Wang, Jiaozi
    Steinigeweg, Robin
    Gemmer, Jochen
    PHYSICAL REVIEW E, 2024, 110 (02)
  • [9] Thermochemistry and Equilibration Time Scales for a Rechargeable Lithium Ion Battery
    Cain, Stephen R.
    Infantolino, William
    Anderson, Allen
    Tasillo, Edward
    Wolfgramm, Paul
    ELECTROCHIMICA ACTA, 2015, 185 : 250 - 258
  • [10] TIME SCALES FOR CHARGE EQUILIBRATION IN HEAVY-ION COLLISIONS
    REHM, KE
    ESSEL, H
    HARTEL, K
    KIENLE, P
    KORNER, HJ
    SEGEL, RE
    SPERR, P
    WAGNER, W
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1979, 293 (02): : 119 - 121