The Critical Renormalization Fixed Point for Commuting Pairs of Area-Preserving Maps

被引:14
作者
Arioli, Gianni [1 ]
Koch, Hans [2 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
CRITICAL INVARIANT TORI; HAMILTONIAN-SYSTEMS; CIRCLES; EXISTENCE; OPERATOR;
D O I
10.1007/s00220-009-0922-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of the critical fixed point (F, G) for MacKay's renormalization operator for pairs of maps of the plane. The maps F and G commute, are area-preserving, reversible, real analytic, and they satisfy a twist condition.
引用
收藏
页码:415 / 429
页数:15
相关论文
共 17 条
[1]  
ARIOLI G, CRITICAL RENORMALIZA, DOI DOI 10.1007/S00220-009-0922-1
[2]   Renormalization-group analysis for the transition to chaos in Hamiltonian systems [J].
Chandre, C ;
Jauslin, HR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 365 (01) :1-64
[3]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284
[4]   HIGHER-ORDER FIXED-POINTS OF THE RENORMALIZATION OPERATOR FOR INVARIANT CIRCLES [J].
GREENE, JM ;
MAO, JM .
NONLINEARITY, 1990, 3 (01) :69-78
[5]  
*IEEE INC, 1985, 7541985 ANSIIEEE
[6]   SCALING FOR A CRITICAL KOLMOGOROV-ARNOLD-MOSER TRAJECTORY [J].
KADANOFF, LP .
PHYSICAL REVIEW LETTERS, 1981, 47 (23) :1641-1643
[7]   On the renormalization of Halmiltonian flows, and critical invariant tori [J].
Koch, H .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03) :633-646
[8]   A renormalization group fixed point associated with the breakup of golden invariant tori [J].
Koch, H .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 11 (04) :881-909
[9]  
Koch H, 2008, FIELDS I COMMUN, V53, P269
[10]   Existence of critical invariant tori [J].
Koch, Hans .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 :1879-1894