Equivalence Verification of Large Galois Field Arithmetic Circuits using Word-Level Abstraction via Grobner Bases

被引:1
作者
Pruss, Tim [1 ]
Kalla, Priyank [1 ]
Enescu, Florian [2 ]
机构
[1] Univ Utah, ECE, Salt Lake City, UT 84112 USA
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
来源
2014 51ST ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC) | 2014年
关键词
Hardware Verification; Word-Level Abstraction; Grobner Bases;
D O I
10.1145/2593069.2593134
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Custom arithmetic circuits designed over Galois fields F-2k are prevalent in cryptography, where the field size k is very large (e.g. k = 571-bits). Equivalence checking of such large custom arithmetic circuits against baseline golden models is beyond the capabilities of contemporary techniques. This paper addresses the problem by deriving word-level canonical polynomial representations from gate-level circuits as Z = F (A) over F-2k, where Z and A represent the output and input bit-vectors of the circuit, respectively. Using algebraic geometry, we show that the canonical polynomial abstraction can be derived by computing a Grobner basis of a set of polynomials extracted from the circuit, using a specific elimination (abstraction) term order. By efficiently applying these concepts, we can derive the canonical abstraction in hierarchically designed, custom arithmetic circuits with up to 571-bit datapath, whereas contemporary techniques can verify only up to 163-bit circuits.
引用
收藏
页数:6
相关论文
共 18 条
  • [1] Biham E, 2008, LECT NOTES COMPUT SC, V5157, P221, DOI 10.1007/978-3-540-85174-5_13
  • [2] BRYANT RE, 1986, IEEE T COMPUT, V35, P677, DOI 10.1109/TC.1986.1676819
  • [3] BUCHBERGER B., 1979, EUROSAM
  • [4] Buchberger B., 1965, Ein Algorithmus Zum Auffinden Der Basiselemente Des Polynomideal
  • [5] Taylor expansion diagrams: A canonical representation for verification of data flow designs
    Ciesielski, Maciej
    Kalla, Priyank
    Askar, Serkan
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2006, 55 (09) : 1188 - 1201
  • [6] Cox D., 1997, Ideals, Varieties, and Algorithms
  • [7] Decker W., 2011, SINGULAR 3-1-3-A computer algebra system for polynomial computations
  • [8] Gao S., 2009, THESIS
  • [9] A technique for representing multiple-output binary functions with applications to verification and simulation
    Jabir, Abusaleh M.
    Pradhan, Dhiraj K.
    Singh, Ashutosh Kumar
    Rajaprabhu, T. L.
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2007, 56 (08) : 1133 - 1145
  • [10] Montgomery Multiplication in GF(2k)
    Koç Ç.K.
    Acar T.
    [J]. Designs, Codes and Cryptography, 1998, 14 (1) : 57 - 69