Observer-Based Fixed-Time Secure Tracking Consensus for Networked High-Order Multiagent Systems Against DoS Attacks

被引:102
作者
Yang, Haijiao [1 ]
Ye, Dan [1 ,2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110189, Peoples R China
基金
中国国家自然科学基金;
关键词
Denial-of-service attack; Transient analysis; Topology; Observers; Network topology; Multi-agent systems; Switches; Defense strategy; denial-of-service (DoS) attacks; fixed-time control; nonlinear multiagent systems (MASs); NONLINEAR-SYSTEMS; STABILIZATION; DESIGN;
D O I
10.1109/TCYB.2020.3005354
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies the secure tracking consensus problem of nonlinear multiagent systems (MASs) against denial-of-service (DoS) attacks. Two types of DoS attacks, i.e., connectivity-maintained attacks and connectivity-broken attacks, are considered. The resulting topologies caused by DoS attacks may destabilize the consensus performance of MASs. Especially under connectivity-broken attacks, the connectivity between agents is destroyed. To deal with these difficulties, a novel defense strategy consisting of distributed observation and decentralized control is proposed. First, a distributed fixed-time observer (DFTO) is prepared for the case of connectivity-maintained attacks, which can quickly and accurately estimate the leader's information for each follower. Besides, the adverse impact of DoS attacks is completely eliminated. Furthermore, to cope with the problem arising from connectivity-broken attacks, by using an online algorithm of updating label information, an improved resilient DFTO (RDFTO) is further developed, which can preserve those followers having directed paths from the leader to quickly and accurately estimate the leader's information, without being affected by DoS attacks. The developed DFTO and RDFTO have successfully eliminated or weakened the adverse effects caused by DoS attacks. Subsequently, based on the proposed DFTO/RDFTO with the power integrator technique, a fixed-time controller is finally constructed, which realizes the desired transient performance of consensus tracking in the finite-time interval. The effectiveness of the proposed defense strategy is verified by stability analysis and simulation examples.
引用
收藏
页码:2018 / 2031
页数:14
相关论文
共 33 条
[1]   Decentralized Adaptive Fuzzy Secure Control for Nonlinear Uncertain Interconnected Systems Against Intermittent DoS Attacks [J].
An, Liwei ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (03) :827-838
[2]   Homogeneous approximation, recursive observer design, and output feedback [J].
Andrieu, Vincent ;
Praly, Laurent ;
Astolfi, Alessandro .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1814-1850
[3]  
[Anonymous], 1988, Mathematics and Its Applications (Soviet Series)
[4]   Distributed Tracking Control of an Interconnected Leader-Follower Multiagent System [J].
Cai, He ;
Hu, Guoqiang .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (07) :3494-3501
[5]   Distributed Resilient Filtering for Power Systems Subject to Denial-of-Service Attacks [J].
Chen, Wei ;
Ding, Derui ;
Dong, Hongli ;
Wei, Guoliang .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (08) :1688-1697
[6]   Input-to-State Stabilizing Control Under Denial-of-Service [J].
De Persis, Claudio ;
Tesi, Pietro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (11) :2930-2944
[7]  
Demmel J. W., 1997, Applied Numerical Linear Algebra, V56
[8]   Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems [J].
Deng, Chao ;
Yang, Guang-Hong .
AUTOMATICA, 2019, 103 :62-68
[9]   A Survey on Model-Based Distributed Control and Filtering for Industrial Cyber-Physical Systems [J].
Ding, Derui ;
Han, Qing-Long ;
Wang, Zidong ;
Ge, Xiaohua .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (05) :2483-2499
[10]   Security Control for Discrete-Time Stochastic Nonlinear Systems Subject to Deception Attacks [J].
Ding, Derui ;
Wang, Zidong ;
Han, Qing-Long ;
Wei, Guoliang .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (05) :779-789