Injective hulls are not natural

被引:14
作者
Adámek, J [1 ]
Herrlich, H
Rosicky, J
Tholen, W
机构
[1] Tech Univ Braunschweig, Inst Theoret Informat, D-38032 Braunschweig, Germany
[2] Univ Bremen, Fachbereich Math, D-28334 Bremen, Germany
[3] Masaryk Univ, Dept Math, Brno 66295, Czech Republic
[4] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
关键词
injective object; projective object; injective hull; projective cover;
D O I
10.1007/s000120200006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a category with injective hulls and a cogenerator, the embeddings into injective hulls can never form a natural transformation, unless all objects are injective. In particular, assigning to a field its algebraic closure, to a poset or Boolean algebra its MacNeille completion, and to an R-module its injective envelope is not functorial, if one wants the respective embeddings to form a natural transformation.
引用
收藏
页码:379 / 388
页数:10
相关论文
共 25 条
[1]  
Adamek J., 1988, CAHIERS TOPOLOGIE G, V29, P175
[2]  
Adamek J., 1990, WILEY INTERSCIENCE S
[3]  
Adamek J., 2002, CAH TOPOL GEOM DIFFE, V43, P83
[4]  
ASH CJ, 1981, J AUSTR MATH SOC S A, V31
[5]  
Baer R., 1940, B AM MATH SOC, V46, P800, DOI 10.1090/S0002-9904-1940-07306-9
[6]  
Banaschewski B., 1970, QUEENS PAPERS PURE A, V25, P131
[7]  
Banaschewski B., 1977, GEN TOPOL APPL, V7, P233
[8]  
Bass H., 1960, T AM MATH SOC, V95, P466, DOI 10.1090/S0002-9947-1960-0157984-8
[9]  
ECKMANN B, 1953, ARCH MATH, V4, DOI DOI 10.1007/BF01899665
[10]  
Faith C., 1981, ALGEBRA 1 RINGS MODU