Discriminative Transformation Learning for Fuzzy Sparse Subspace Clustering

被引:7
作者
Wen, Zaidao [1 ,2 ]
Hou, Biao [1 ,2 ]
Wu, Qian [1 ,2 ]
Jiao, Licheng [1 ,2 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Joint Int Res Lab Intelligent Percept & Computat, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Dimensionality reduction (DR); discriminative clustering; discriminative transformation learning (DTL); sparse representation; subspace clustering (SC); THRESHOLDING ALGORITHM; MOTION SEGMENTATION; FACE RECOGNITION; FRAMEWORK;
D O I
10.1109/TCYB.2017.2729542
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a novel iterative framework for subspace clustering (SC) in a learned discriminative feature domain. This framework consists of two modules of fuzzy sparse SC and discriminative transformation learning. In the first module, fuzzy latent labels containing discriminative information and latent representations capturing the subspace structure will be simultaneously evaluated in a feature domain. Then the linear transforming operator with respect to the feature domain will be successively updated in the second module with the advantages of more discrimination, subspace structure preservation, and robustness to outliers. These two modules will be alternatively carried out and both theoretical analysis and empirical evaluations will demonstrate its effectiveness and superiorities. In particular, experimental results on three benchmark databases for SC clearly illustrate that the proposed framework can achieve significant improvements than other state-of-the-art approaches in terms of clustering accuracy.
引用
收藏
页码:2218 / 2231
页数:14
相关论文
共 63 条
  • [11] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    [J]. JOURNAL OF THE ACM, 2011, 58 (03)
  • [12] Sparse Regularization in Fuzzy c-Means for High-Dimensional Data Clustering
    Chang, Xiangyu
    Wang, Qingnan
    Liu, Yuewen
    Wang, Yu
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (09) : 2616 - 2627
  • [13] Spectral Curvature Clustering (SCC)
    Chen, Guangliang
    Lerman, Gilad
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 81 (03) : 317 - 330
  • [14] Robust Subspace Segmentation Via Low-Rank Representation
    Chen, Jinhui
    Yang, Jian
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1432 - 1445
  • [15] Davis J. V., 2008, P 14 ACM SIGKDD INT, P195, DOI DOI 10.1145/1401890.1401918
  • [16] Ding C., 2007, P 24 INT C MACH LEAR, P521
  • [17] Sparse Subspace Clustering: Algorithm, Theory, and Applications
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2765 - 2781
  • [18] Robust Semi-Supervised Subspace Clustering via Non-Negative Low-Rank Representation
    Fang, Xiaozhao
    Xu, Yong
    Li, Xuelong
    Lai, Zhihui
    Wong, Wai Keung
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (08) : 1828 - 1838
  • [19] Robust Subspace Segmentation with Block-diagonal Prior
    Feng, Jiashi
    Lin, Zhouchen
    Xu, Huan
    Yan, Shuicheng
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3818 - 3825
  • [20] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144