Discriminative Transformation Learning for Fuzzy Sparse Subspace Clustering

被引:7
作者
Wen, Zaidao [1 ,2 ]
Hou, Biao [1 ,2 ]
Wu, Qian [1 ,2 ]
Jiao, Licheng [1 ,2 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Joint Int Res Lab Intelligent Percept & Computat, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Dimensionality reduction (DR); discriminative clustering; discriminative transformation learning (DTL); sparse representation; subspace clustering (SC); THRESHOLDING ALGORITHM; MOTION SEGMENTATION; FACE RECOGNITION; FRAMEWORK;
D O I
10.1109/TCYB.2017.2729542
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a novel iterative framework for subspace clustering (SC) in a learned discriminative feature domain. This framework consists of two modules of fuzzy sparse SC and discriminative transformation learning. In the first module, fuzzy latent labels containing discriminative information and latent representations capturing the subspace structure will be simultaneously evaluated in a feature domain. Then the linear transforming operator with respect to the feature domain will be successively updated in the second module with the advantages of more discrimination, subspace structure preservation, and robustness to outliers. These two modules will be alternatively carried out and both theoretical analysis and empirical evaluations will demonstrate its effectiveness and superiorities. In particular, experimental results on three benchmark databases for SC clearly illustrate that the proposed framework can achieve significant improvements than other state-of-the-art approaches in terms of clustering accuracy.
引用
收藏
页码:2218 / 2231
页数:14
相关论文
共 63 条
  • [1] [Anonymous], FOUND TRENDS MACH LE
  • [2] [Anonymous], 2006, Pattern Recognition and Machine Learning
  • [3] [Anonymous], 2014, ICLR, DOI DOI 10.1145/1830483.1830503
  • [4] [Anonymous], 2016, IJCAI
  • [5] [Anonymous], 2004, P 17 INT C NEUR INF
  • [6] Balakrishnama S., 1998, LINEAR DISCRIMINANT
  • [7] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [8] Bingham E., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P245, DOI 10.1145/502512.502546
  • [9] Boult T. E., 1991, Proceedings of the IEEE Workshop on Visual Motion (Cat. No.91TH0390-5), P179, DOI 10.1109/WVM.1991.212809
  • [10] A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION
    Cai, Jian-Feng
    Candes, Emmanuel J.
    Shen, Zuowei
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) : 1956 - 1982