Kinetic Evaluation of the Charge Migration and H2O2 Transport Rates During the Electrocatalytic Reduction of H2O2 on Thin Prussian Blue Films

被引:1
|
作者
Resetar, Egon [1 ]
Cicic, Sandra [1 ]
Ivekovic, Damir [1 ]
机构
[1] Univ Zagreb, Fac Food Technol & Biotechnol, Dept Chem & Biochem, Lab Gen & Inorgan Chem & Electroanal, Pierottijeva 6, HR-10000 Zagreb, Croatia
关键词
iron(III) hexacyanoferrate(II); Prussian blue; electron transport; H2O2; diffusion; electrocatalysis; kinetics; HYDROGEN-PEROXIDE; ELECTROCHEMICAL REACTIONS; SENSITIVITY; ELECTRODES; CATALYSIS; SENSOR;
D O I
10.5562/cca3555
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Kinetic analysis of the electrocatalytic reduction of H2O2 on electrodes modified with thin Prussian blue films was performed and a full set of kinetic parameters governing the rate of the electrocatalytic reaction was determined. Rate constant (kappa.k') for the catalytic reaction between H2O2 and the reduced form of Prussian blue incorporating interstitial Cs+ and K+ ions was calculated to be equal to 3.1.10(6) and 2.3.10(6) cm(3).mol(-1) s(-1), respectively. The diffusion coefficient of H2O2 and the apparent diffusion coefficient of electrons in the reduced form of Prussian blue were found to be kappa center dot D-S(H2O2) = 2.6.10(-7) cm(2)/s and D-e = 2.8.10(-12) cm(2)/s, respectively.
引用
收藏
页码:403 / 410
页数:8
相关论文
共 50 条
  • [31] Electrocatalytic Performances of NiCo2O4 Nanowires for H2O2 Eectroreduction
    Wang Gui-Ling
    Hao Shi-Yang
    Lu Tian-Hong
    Cao Dian-Xue
    Yin Cui-Lei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2010, 31 (11): : 2264 - 2267
  • [32] Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors
    Komkova, Maria A.
    Pasquarelli, Alberto
    Andreev, Egor A.
    Galushin, Andrei A.
    Karyakin, Arkady A.
    ELECTROCHIMICA ACTA, 2020, 339
  • [33] Possibility of H2O2 decomposition in thin liquid films on Mars
    Kereszturi, Akos
    Gobi, Sandor
    PLANETARY AND SPACE SCIENCE, 2014, 103 : 153 - 166
  • [34] Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe2+ processes for the decolorisation of vinylsulphone reactive dyes
    Kurbus, T
    Le Marechal, AM
    Voncina, DB
    DYES AND PIGMENTS, 2003, 58 (03) : 245 - 252
  • [35] The reduction of I2 by H2O2 in aqueous solution
    Ball, JM
    Hnatiw, JB
    CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 2001, 79 (03): : 304 - 311
  • [36] Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes
    Xu, Xiang-Rong
    Li, Xiao-Yan
    Li, Xiang-Zhong
    Li, Hua-Bin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 68 (02) : 261 - 266
  • [37] Monochloramine Formation and Decay in the Presence of H2O2 after UV/H2O2 Advanced Oxidation
    Wang, Chengjin
    Zheng, Liang
    Andrews, Susan
    Hofmann, Ron
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2020, 146 (06)
  • [38] Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2
    Jeric, Tina
    Bisselink, Roel J. M.
    van Tongeren, Willy
    Le Marechal, Alenka M.
    ACTA CHIMICA SLOVENICA, 2013, 60 (03) : 666 - 672
  • [39] Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors
    O'Halloran, MP
    Pravda, M
    Guilbault, GG
    TALANTA, 2001, 55 (03) : 605 - 611
  • [40] Inhibitory and enhancing effects of NO on H2O2 toxicity:: Dependence on the concentrations of NO and H2O2
    Rauen, Ursula
    Li, Tongju
    De Groot, Herbert
    FREE RADICAL RESEARCH, 2007, 41 (04) : 402 - 412