Quasi-Hamiltonian geometry of meromorphic connections

被引:53
作者
Boalch, Philip [1 ]
机构
[1] Ecole Normale Super, CNRS, Dept Maths & Applicat, F-75005 Paris, France
关键词
D O I
10.1215/S0012-7094-07-13924-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each connected complex reductive group G, we find a family of new examples of complex quasi-Hamiltonian G-spaces with G-valued moment maps. These spaces arise naturally as moduli spaces of (suitably framed) meromorphic connections on principal G-bundles over a disk, and they generalise the conjugacy class example of Alekseev, Malkin, and Meinrenken [3] (which appears in the simple pole case). Using the "fusion product" in the theory, this gives a finite-dimensional construction of the natural symplectic structures on the spaces of monodromy/Stokes data of meromorphic connections over arbitrary genus Riemann surfaces, together with a new, proof of the symplectic nature of isomonodromic deformations of such connections.
引用
收藏
页码:369 / 405
页数:37
相关论文
共 50 条
[31]   Quasi-Hamiltonian cycles in k-strong multipartite tournaments [J].
Surmacs, Michel .
DISCRETE APPLIED MATHEMATICS, 2015, 184 :253-257
[32]   Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras [J].
Ma, Wen-Xiu ;
Chen, Min .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (34) :10787-10801
[33]   Quasi-Hamiltonian reduction via classical Chern-Simons theory [J].
Safronov, Pavel .
ADVANCES IN MATHEMATICS, 2016, 287 :733-773
[34]   Optimal Vibration Control for Structural Quasi-Hamiltonian Systems with Noised Observations [J].
Ying, Zu-guang ;
Hu, Rong-chun ;
Huan, Rong-hua .
INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2017, 22 (02) :233-241
[36]   Quasi-Hamiltonian principle of liquid-filled elastic body dynamics [J].
Hao MingWang ;
Ye ZhengYin .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2010, 53 (06) :1116-1123
[37]   Quasi-Hamiltonian Equations of Motion for Internal Coordinate Molecular Dynamics of Polymers [J].
Mazur, A. K. .
Journal of Computational Chemistry, 18 (11)
[38]   Quasi-Hamiltonian principle of liquid-filled elastic body dynamics [J].
MingWang Hao ;
ZhengYin Ye .
Science China Physics, Mechanics and Astronomy, 2010, 53 :1116-1123
[39]   Deep learning-based stochastic averaging method for quasi-Hamiltonian system [J].
Lu, Qiangfeng ;
Deng, Maolin .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2025, 234 (03) :675-690
[40]   Quasi-Hamiltonian principle of liquid-filled elastic body dynamics [J].
HAO MingWang YE ZhengYin National Key Laboratory of Aerodynamic Design and ResearchNorthwestern Polytechnical UniversityXian China .
Science China(Physics,Mechanics & Astronomy), 2010, Mechanics & Astronomy)2010 (06) :1116-1123